当前位置: 首页 > news >正文

milvus 结合Thowee 文本转向量 ,新建表,存储,搜索,删除

1.向量数据库科普

【上集】向量数据库技术鉴赏
【下集】向量数据库技术鉴赏
milvus连接

from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
connections.connect(host='124.****', port='19530')

2.milvus + Thowee 文本转向量 使用

@app.route("/es",methods=["GET","POST"])
def es_sous():ans_pipe = (pipe.input('subject').map('subject', 'vector', ops.text_embedding.dpr(model_name="facebook/dpr-ctx_encoder-single-nq-base"))#将输入的问题文本转换为向量表示,使用名为 "facebook/dpr-ctx_encoder-single-nq-base" 的预训练模型进行文本嵌入。.map('vector', 'vector', lambda x: x / np.linalg.norm(x, axis=0))#对上一步得到的向量进行归一化处理,使得向量的每个维度都被缩放到相同尺度。.output('vector'))param = request.args.get('prop')#传入一个文本ans = ans_pipe(param)#文本转向量ans = DataCollection(ans)#格式化ans.show() #print(type(ans[0].vector))list1 = ans[0].vector.tolist()return list1

在这里插入图片描述

3.milvus + openai 文本转向量 使用

import openai
OPENAI_ENGINE = 'text-embedding-ada-002'#使用哪种嵌入模型
openai.api_key = 'sk-*****'#您的 OpenAI 帐户密钥
def embed(texts): #返回 向量embeddings = openai.Embedding.create(input=texts,engine=OPENAI_ENGINE)return [x['embedding'] for x in embeddings['data']]

4. milvus + 微软openai 文本转向量 使用

import openai
openai.api_key = "0**********"    # Azure 的密钥
openai.api_base = "https://zhan.op*****"  # Azure 的终结点
openai.api_type = "azure"
openai.api_version = "2023-03-15-preview" # API 版本,未来可能会变
model = "text"  # 模型的部署名
def embed(texts):embeddings = openai.Embedding.create(input=texts,engine=model)return [x['embedding'] for x in embeddings['data']]

5.milvus 新建表

在这里插入图片描述
在这里插入图片描述

def create_milvus_collection(collection_name,dim):if utility.has_collection(collection_name):utility.drop_collection(collection_name)fields = [FieldSchema(name = 'id',dtype=DataType.INT64,description='ids',is_primary=True),FieldSchema(name='answer',dtype=DataType.VARCHAR,max_length = 2000,description='答案'),FieldSchema(name='subject',dtype=DataType.VARCHAR,max_length = 1000,description='题目'),FieldSchema(name='subject_embedding', dtype=DataType.FLOAT_VECTOR, dim=dim,description = '题目矢量'),FieldSchema(name='url', dtype=DataType.VARCHAR, max_length = 255,description = '路径')]# CollectionSchema:这是一个用于定义数据表结构的类。schema = CollectionSchema(fields = fields,description='Test')collection = Collection(name=collection_name,schema=schema)index_params = {'metric_type': 'L2','index_type': "IVF_FLAT",'params': {"nlist": 2048}}collection.create_index(field_name="subject_embedding",index_params=index_params)return collection
collections = create_milvus_collection('Test',768) # 表名 , 模型维度

6.milvus存储

1.milvus存储 和 thowee 管道

insert = (pipe.input('id','subject','answer','url','subject_embedding')#将输入的问题文本转换为向量表示,使用名为 "facebook/dpr-ctx_encoder-single-nq-base" 的预训练模型进行文本嵌入。.map('subject','vec',ops.text_embedding.dpr(model_name='facebook/dpr-ctx_encoder-single-nq-base'))# 对上一步得到的向量进行归一化处理,使得向量的每个维度都被缩放到相同尺度。.map('vec', 'vec', lambda x: x / np.linalg.norm(x, axis=0)).map(('id','answer','subject','vec','url'),'insert_status',ops.ann_insert.milvus_client(host='124。*****', port='19530', collection_name='Test'))#进行存储.output()#返回
)

2.milvus存储 和 原始的存储方案

 milvus = Milvus(host=HOST, port=PORT) # milvus 连接data1 = [[],[],# subject[],# option[],# answer[],#knowledgepoints[],#img[],#video[],#parse]data1[0].append(None)data1[1].append(request.args.get('subject'))data1[2].append(request.args.get('option'))data1[3].append(request.args.get('answer'))data1[4].append(request.args.get('knowledgepoints'))data1[5].append(request.args.get('img'))data1[6].append(request.args.get('video'))data1[7].append(request.args.get('parse'))data1.append(embed(data1[1]))# 转向量milvus.insert(collection_name=COLLECTION_NAME,entities=data1)# 调用 insert 新增 表名+数据return "ok"

7.milvus 搜索

# milvus 搜索
# 搜索 索引
QUERY_PARAM = {"metric_type": "L2","params": {"ef": 64},
}collection.search()res = collection.search(embed(request.args.get('subject')), anns_field='subject_embedding', param=QUERY_PARAM, limit = 1, output_fields=['id', 'subject', 'answer','option'])
# 向量 , 指定被搜索字段,索引,top1,返回字段______________________________________________例子
import openai
from pymilvus import connections, utility, FieldSchema, Collection, CollectionSchema, DataType
HOST = '124.**********'
PORT = 19530
COLLECTION_NAME = 'mo'#在 Milvus 中如何命名
DIMENSION = 1536 #嵌入的维度
OPENAI_ENGINE = 'text-embedding-ada-002'#使用哪种嵌入模型
openai.api_key = 'sk-***************'#您的 OpenAI 帐户密钥
QUERY_PARAM = {"metric_type": "L2","params": {"ef": 64},
}
connections.connect(host=HOST, port=PORT)
def embed(texts):embeddings = openai.Embedding.create(input=texts,engine=OPENAI_ENGINE)return [x['embedding'] for x in embeddings['data']]
collection = Collection(COLLECTION_NAME) 
def query(query, top_k = 5):text = queryres = collection.search(embed(text), anns_field='subject_embedding', param=QUERY_PARAM, limit = top_k, output_fields=['id', 'subject', 'answer'])print(res)
my_query = ('P、V操作是一种')query(my_query)

在这里插入图片描述

milvus 搜索 + thowee管道 搜索

ans_pipe = (pipe.input('subject').map('subject', 'vector', ops.text_embedding.dpr(model_name="facebook/dpr-ctx_encoder-single-nq-base"))#将输入的问题文本转换为向量表示,使用名为 "facebook/dpr-ctx_encoder-single-nq-base" 的预训练模型进行文本嵌入。.map('vector', 'vector', lambda x: x / np.linalg.norm(x, axis=0))#对上一步得到的向量进行归一化处理,使得向量的每个维度都被缩放到相同尺度。.flat_map('vector', ('id','score', 'answer','subject'), ops.ann_search.milvus_client(host='124.222.24.191',port='19530',collection_name='Test',output_fields=['answer','subject'])).output('subject','id','score','answer')
)
ans = ans_pipe('恶性肿瘤是什么?')
ans = DataCollection(ans)
ans.show()

8.milvus 删除

emb_collection.delete(expr=f"id == [{emb_id}]") # failedemb_collection.delete(expr=f"id in [{emb_id}]") # Success

相关文章:

milvus 结合Thowee 文本转向量 ,新建表,存储,搜索,删除

1.向量数据库科普 【上集】向量数据库技术鉴赏 【下集】向量数据库技术鉴赏 milvus连接 from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility connections.connect(host124.****, port19530)2.milvus Thowee 文本转向量 使用 …...

GEO生信数据挖掘(三)芯片探针ID与基因名映射处理

检索到目标数据集后,开始数据挖掘,本文以阿尔兹海默症数据集GSE1297为例 目录 处理一个探针对应多个基因 1.删除该行 2.保留分割符号前面的第一个基因 处理多个探针对应一个基因 详细代码案例一删除法 详细代码案例二 多个基因名时保留第一个基因名…...

力扣 -- 96. 不同的二叉搜索树

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:int numTrees(int n) {vector<int> dp(n1);//初始化dp[0]1;//填表for(int i1;i<n;i){for(int j1;j<i;j){//状态转移方程dp[i](dp[j-1]*dp[i-j]);}}//返回值return dp[n];} }; 你学会了吗&…...

经典算法-枚举法(百钱买百鸡问题)

题目&#xff1a; 条件&#xff1a;现有 100 元&#xff0c;一共要买公鸡、母鸡、小鸡三种鸡&#xff0c;已知公鸡 5 元一只&#xff0c;母鸡 3 元一只&#xff0c;1 元可以买三只小鸡。 要求&#xff1a;公鸡、母鸡、小鸡都要有&#xff0c;一共买 100 只鸡。有哪几种买法&am…...

Gurobi设置初始可行解

目录 1. 决策变量的Start属性直接设置变量的初始值 1.1 Start&#xff1a;MIP变量的起始值&#xff08;初值&#xff09;double类型&#xff0c;可更改 1.2 StartNodeLimit&#xff1a;限制了在完善一组输入部分变量的初始解时&#xff0c;MIP所探索的分支定界的节点的数量 …...

Zabbix配置监控文件系统可用空间小于30GB自动告警

一、创建监控项 二、配置监控项 #输入名称–>键值点击选择 #找到磁盘容量点击 注&#xff1a; 1、vfs 该键值用于检测磁盘剩余空间&#xff0c;zabbix 内置了非常多的键值可以选着使用 2、单位B不需要修改&#xff0c;后期图表中单位和G拼接起来就是GB 3、更新时间 10S…...

进程调度算法之先来先服务(FCFS),短作业优先(SJF)以及高响应比优先(HRRN)

1.先来先服务&#xff08;FCFS&#xff09; first come first service 1.算法思想 主要从“公平”的角度考虑(类似于我们生活中排队买东西的例子) 2.算法规则 按照作业/进程到达的先后顺序进行服务。 3.用于作业/进程调度 用于作业调度时&#xff0c;考虑的是哪个作业先…...

MyBatisPlus(九)模糊查询

说明 模糊查询&#xff0c;对应SQL语句中的 like 语句&#xff0c;模糊匹配“要查询的内容”。 like /*** 查询用户列表&#xff0c; 查询条件&#xff1a;姓名包含 "J"*/Testvoid like() {String name "J";LambdaQueryWrapper<User> wrapper ne…...

Spring 原理

它是一个全面的、企业应用开发一站式的解决方案&#xff0c;贯穿表现层、业务层、持久层。但是 Spring仍然可以和其他的框架无缝整合。 1 Spring 特点 轻量级控制反转面向切面容器框架集合 2 Spring 核心组件 3 Spring 常用模块 4 Spring 主要包 5 Spring 常用注解 bean…...

基于微信小程序的明星应援小程序设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言系统主要功能&#xff1a;具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计…...

try catch 中的finally什么时候运行

try catch 中的finally什么时候运行 在Java、C#等编程语言中&#xff0c;try-catch-finally语句块用于处理异常。finally块的执行时机通常是在try块中的代码执行完毕之后&#xff0c;无论try块中的代码是否引发了异常。 具体执行顺序如下&#xff1a; 1、try块中的代码首先被…...

力扣 -- 322. 零钱兑换(完全背包问题)

参考代码&#xff1a; 未优化代码&#xff1a; class Solution { public:int coinChange(vector<int>& coins, int amount) {int n coins.size();const int INF 0x3f3f3f3f;//多开一行&#xff0c;多开一列vector<vector<int>> dp(n 1, vector<i…...

[python]pip安装requiements.txt跳过错误包继续安装

在linux上可以用下面操作进行 while read requirement; do sudo pip install $requirement; done < requirement.txt 在windows上写个脚本 import sys from pip._internal import main as pip_maindef install(package):pip_main([--default-timeout1000,install,-U, pac…...

1.5 计算机网络的类别

思维导图&#xff1a; 1.5.1 计算机网络的定义 我的笔记&#xff1a; #### 精确定义&#xff1a; 计算机网络没有统一的精确定义&#xff0c;但一种较为接近的定义是&#xff1a;计算机网络主要由一些通用的、可编程的硬件互连而成&#xff0c;这些硬件并非专门用来实现某一特…...

Go 基本数据类型和 string 类型介绍

Go 基础之基本数据类型 文章目录 Go 基础之基本数据类型一、整型1.1 平台无关整型1.1.1 基本概念1.1.2 分类有符号整型&#xff08;int8~int64&#xff09;无符号整型&#xff08;uint8~uint64&#xff09; 1.2 平台相关整型1.2.1 基本概念1.2.2 注意点1.2.3 获取三个类型在目标…...

Python中print()打印如何不换行?

文章目录 Python中print()打印如何不换行python2.xpython3.x print()函数语法objects基本语法sep基本语法end基本语法 Python中print()打印如何不换行 print() 函数用于打印输出&#xff0c;是python中最常见的一个内置函数。 如何在Python中打印两个或多个变量、语句时而不进…...

python 学习随笔 4

列表list 将序列前几个进行替换&#xff08;数量可以不同&#xff09; 将序列进行间隔替换&#xff08;必须保证数量相同&#xff0c;否则报错&#xff09; 删除序列内元素 向序列后新增一个元素 向序列后新增多个元素 将序列进行数乘&#xff08;不是产生几个序列哦&#xff0…...

【网络安全-信息收集】网络安全之信息收集和信息收集工具讲解

一&#xff0c;域名信息收集 1-1 域名信息查询 可以用一些在线网站进行收集&#xff0c;比如站长之家 域名Whois查询 - 站长之家站长之家-站长工具提供whois查询工具&#xff0c;汉化版的域名whois查询工具。https://whois.chinaz.com/ 可以查看一下有没有有用的信息&#xf…...

设计模式12、代理模式 Proxy

解释说明&#xff1a;代理模式&#xff08;Proxy Pattern&#xff09;为其他对象提供了一种代理&#xff0c;以控制对这个对象的访问。在某些情况下&#xff0c;一个对象不适合或者不能直接引用另一个对象&#xff0c;而代理对象可以在客户端和目标对象之间起到中介的作用。 抽…...

ZXing - barcode scanning library for Java, Android

官网 GitHub - zxing/zxing: ZXing ("Zebra Crossing") barcode scanning library for Java, Android 使用说明 Getting Started Developing zxing/zxing Wiki GitHub 参考 Android中二维码的扫描与生成&#xff08;zxing库&#xff09;_android 二维码生成-C…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...