AtCoder Beginner Contest 232(A-G)
A - QQ solver (atcoder.jp)直接按题意模拟即可。
B - Caesar Cipher (atcoder.jp)按题意模拟即可
C - Graph Isomorphism (atcoder.jp)按题意模拟即可
D - Weak Takahashi (atcoder.jp) 一个非常套路的网格dp
E - Rook Path (atcoder.jp)
(1)题意
有一个H*W的网格,网格中有一个车初始在(x1,y1)这个位置,高桥操作K次后达到(x2,y2)的方案数是多少,每一次移动可以挪到一行或者这一列的任意一个位置上去,但是不能在原始位置。
(2)思路
考虑K不大,我们进行O(K)的dp。
定义dp[i][0]表示前i步操作操作完后和最终位置行列都不同的方案数
定义dp[i][1]表示前i步操作操作完后和最终位置列相同的方案数
定义dp[i][2]表示前i步操作操作完后和最终位置列相同的方案数
定义dp[i][3]表示前i步操作操作完后和最终位置行列都相同的方案数
1.首先若第i步操作想要变成行列都相同,则前(i - 1)步一定是行相同或者列相同
2.若第i步操作只要变成行相同,那么前面可能是通过行相同,但第i步走到了不同列,或者是前面i-1步行列都不同走到这行上来了,或者是前面行列都一样,走到不同的列去了。
3.若第i步操作只要变成列相同,那么前面可能是通过列相同,但第i步走到了不同行,或者是前面i-1步行列都不同走到这列上来了,或者是前面行列都一样,走到不同的行去了。
4.若第i步操作想要变成行列都不同,那么可能是通过行相同,然后走到了不同行,或者是列相同走到了不同列,或者是行列都不同又走到了行列都不同。
(3)代码
#include <bits/stdc++.h>
#define rep(i,z,n) for(int i = z;i <= n; i++)
#define per(i,n,z) for(int i = n;i >= z; i--)
#define PII pair<int,int>
#define fi first
#define se second
#define vi vector<int>
#define vl vector<ll>
#define pb push_back
#define sz(x) (int)x.size()
#define all(x) (x).begin(),(x).end()
using namespace std;
using ll = long long;
const int N = 1e6 + 10;
ll dp[N][4];
const ll mod = 998244353;
void solve()
{ll h,w,k;cin >> h >> w >> k;int x1,y1,x2,y2;cin >> x1 >> y1 >> x2 >> y2;if(x1 == x2 && y1 == y2) dp[0][3] = 1;else if(x1 == x2) dp[0][2] = 1;else if(y1 == y2) dp[0][1] = 1;else dp[0][0] = 1;//3 :行列都相同,2:行相同 1:列相同 0:行列都不同rep(i,1,k) {dp[i][3] = dp[i - 1][2] + dp[i - 1][1];dp[i][2] = dp[i - 1][2] * (w - 2) % mod + dp[i - 1][0] + dp[i - 1][3] * (w - 1) % mod;dp[i][1] = dp[i - 1][1] * (h - 2) % mod + dp[i - 1][0] + dp[i - 1][3] * (h - 1) % mod;dp[i][0] = dp[i - 1][2] * (h - 1) % mod + dp[i - 1][1] * (w - 1) + dp[i - 1][0] * (w - 2) % mod + dp[i - 1][0] * (h - 2) % mod;rep(j,0,3) dp[i][j] %= mod;}cout << dp[k][3];
}
int main()
{ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);int T = 1;// cin >> T;while(T --) solve();return 0;
}
F - Simple Operations on Sequence (atcoder.jp)
(1)题意
给你一个长度为N的A序列和一个长度为N的B序列,你每次可以对A的一个元素进行加1或减1,这个操作一次花费X元,你也可以对A的一个元素i进行交换,交换A[i]和A[i + 1],这个操作花费Y元,问你使得A序列变成B序列的最小花费是多少?
(2)思路
考虑N不大,我们直接进行状压dp,dp[i]表示i这个点集我已经匹配了多少个A序列的位置,匹配了B的哪些位置需要的最小花费。
那么考虑转移首先枚举我要放的位置(也就是A未匹配的位置),我们把A[j]这个元素放到z这个位置上去,考虑前面已经放了met个,那么你一定需要交换met次。
最终输出dp[(1 << N) - 1]即可。
(3)代码
#include <bits/stdc++.h>
#define rep(i,z,n) for(int i = z;i <= n; i++)
#define per(i,n,z) for(int i = n;i >= z; i--)
#define PII pair<int,int>
#define fi first
#define se second
#define vi vector<int>
#define vl vector<ll>
#define pb push_back
#define sz(x) (int)x.size()
#define all(x) (x).begin(),(x).end()
using namespace std;
using ll = long long;
const int N = 20;
ll dp[1 << N];
int a[N],b[N];
void solve()
{ll n,X,Y;cin >> n >> X >> Y;rep(i,0,n - 1) cin >> a[i];rep(i,0,n - 1) cin >> b[i];memset(dp,0x3f,sizeof(dp));dp[0] = 0;for(int i = 0;i < (1 << n);i ++) {int z = __builtin_popcount(i),met = 0;for(int j = n - 1;j >= 0;j --) {if(!(i >> j & 1)) {dp[i | (1 << j)] = min(dp[i | 1 << j],dp[i] + 1ll * abs(a[j] - b[z]) * X + 1ll * met * Y);}else met ++;}}cout << dp[(1 << n) - 1];
}
int main()
{ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);int T = 1;// cin >> T;while(T --) solve();return 0;
}
G - Modulo Shortest Path (atcoder.jp)
(1)题意
给你两个序列A和B,你有一条从i->j的权值为(A[i] + B[j]) % M的边,问你从1走到N的最短路径是多长。
(2)思路
考虑暴力,我们建边都要N^2,显然不可行,考虑优化建边。
对于A序列我们把i向M - A[i]连一条权值为0的边,对于B序列我们把B[i]向i连一条权值为0的边,对于[0,M - 1]把0->1,1->2.....M - 2->M - 1连一条权值为1的边,这样图就变成了这样。

为什么要向M-A[i]连边而不是向A[i]连边呢?我们考虑分类讨论一下,画一下横坐标就行了。
好,现在我们的建边从N^2变成了2*N+M,显然M太大过不了,那么考虑其实有些边是用不到的,比如说0-1->2->3->4->5,难道我真要一步步跳过去?显然不可能,我们可以直接压缩成0->5。那哪些模数要用到呢,实际上就是我们建边用的M - a[i]和b[i],从小的向大的连一下即可,然后跑一个最短路就做完了。
(3)代码
#include <bits/stdc++.h>
#define rep(i,z,n) for(int i = z;i <= n; i++)
#define per(i,n,z) for(int i = n;i >= z; i--)
#define PII pair<int,int>
#define fi first
#define se second
#define vi vector<int>
#define vl vector<ll>
#define pb push_back
#define sz(x) (int)x.size()
#define all(x) (x).begin(),(x).end()
using namespace std;
using ll = long long;
const int N = 6e5 + 10;
vector<PII> e[N];
int a[N],b[N];
ll dis[N];
vector<int> ver;
int get(int x)
{return lower_bound(all(ver),x) - ver.begin() + 1;
}
inline ll dij(int s,int t)
{memset(dis,0x3f,sizeof(dis));dis[s] = 0;priority_queue<pair<ll,int>,vector<pair<ll,int>>,greater<pair<ll,int>>> q;q.push({dis[s],s});while(!q.empty()) {auto [val,u] = q.top();q.pop();for(auto [v,w]: e[u]) {if(dis[v] > val + w) {dis[v] = val + w;q.push({dis[v],v});}}}return dis[t];
}
void solve()
{int n,m;cin >> n >> m;rep(i,1,n) {cin >> a[i];a[i] = (m - a[i]) % m;ver.pb(a[i]);}rep(i,1,n) {cin >> b[i];ver.pb(b[i]);}sort(all(ver));rep(i,1,n) {a[i] = get(a[i]);b[i] = get(b[i]);e[i + sz(ver)].pb({a[i],0});e[b[i]].pb({i + sz(ver),0});}rep(i,1,sz(ver) - 1) {e[i].pb({i + 1,ver[i] - ver[i - 1]});}e[sz(ver)].pb({1,(ver[0] -ver[sz(ver) - 1] + m) % m});cout << dij(1 + sz(ver),n + sz(ver));
}
int main()
{ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);int T = 1;// cin >> T;while(T --) solve();return 0;
}
相关文章:
AtCoder Beginner Contest 232(A-G)
A - QQ solver (atcoder.jp)直接按题意模拟即可。 B - Caesar Cipher (atcoder.jp)按题意模拟即可 C - Graph Isomorphism (atcoder.jp)按题意模拟即可 D - Weak Takahashi (atcoder.jp) 一个非常套路的网格dp E - Rook Path (atcoder.jp) (1)题意 有…...
计算机网络(第8版)-第5章 运输层
5.1 运输层协议概述 5.1.1 进程之间的通信 图5-1 中两个运输层之间有一个深色双向粗箭头,写明“运输层提供应用进程间的逻辑通信”。 图5-1 运输层为相互通信的应用进程提供了逻辑通信 5.1.2 运输层的两个主要协议 5.1.3 运输层的端口 请注意,这种…...
AtCoder Beginner Contest 231(D-F,H)
D - Neighbors (atcoder.jp) (1)题意 给出M组关系,问是否有一个排列,能表示A[i]和B[i]相邻 (2)思路 考虑如果有环,显然不能满足排列,因为排列中度数最多为2,若有超过2的显…...
【Python】map
map()函数是Python内置函数之一,它的主要作用是将一个函数应用于可迭代对象中的每个元素,并返回一个包含结果的迭代器。 map()函数的语法如下: map(function, iterable)function参数是一个函数,表示要应用于可迭代对象每个元素的…...
Swift 5.9 与 SwiftUI 5.0 中新 Observation 框架应用之深入浅出
0. 概览 Swift 5.9 一声炮响为我们带来全新的宏(Macro)机制,也同时带来了干霄凌云的 Observation 框架。 Observation 框架可以增强通用场景下的使用,也可以搭配 SwiftUI 5.0 而获得双剑合璧的更强威力。 在本篇博文,…...
【已解决】在 Vite 项目中使用 eslint-config-ali 时遇到的解析错误
错误还原 搭建 Vite 项目 pnpm create vite my-vue-app --template vue-ts安装 eslint-config-ali pnpm i -D eslint-config-ali typescript-eslint/parser typescript-eslint/eslint-plugin eslint-plugin-import eslint-import-resolver-typescript vue-eslint-parser esl…...
蓝桥杯每日一题2023.10.5
3420. 括号序列 - AcWing题库 题目描述 题目分析 对于这一我们需要有前缀知识完全背包 完全背包的朴素写法: #include<bits/stdc.h> using namespace std; const int N 1010; int n, m, v[N], w[N], f[N][N]; int main() {cin >> n >> m;fo…...
PyTorch实例:简单线性回归的训练和反向传播解析
文章目录 🥦引言🥦什么是反向传播?🥦反向传播的实现(代码)🥦反向传播在深度学习中的应用🥦链式求导法则🥦总结 🥦引言 在神经网络中,反向传播算法…...
Arcgis提取玉米种植地分布,并以此为掩膜提取遥感影像
Arcgis提取玉米种植地分布上,并以此为掩膜提取遥感影像 一、问题描述 因为之前反演是整个研究区,然而土地利用类型有很多类,只在农田或者植被上进行反演,需要去除水体、建筑等其他类型,如何处理得到下图中只有耕地类…...
软件工程与计算总结(四)项目管理基础
目录 一.项目和项目管理 二.团队组织与管理 三.软件质量保障 四.软件配置管理 五.项目实践 一.项目和项目管理 1.软件开发远不是纯粹的编程,随着软件规模的增长,软件开发活动也变得越来越复杂~ 2.软件项目就是要将所有的软件开发活动组织起来&#…...
【Python】datetime 库
# timedelta(days, seconds, microseconds,milliseconds, minutes, hours, weeks) 默认按顺序传递参数 # 主要介绍 datetime.datetime 类 # 引入 from datetime import datetime today datetime.now() # 获取当前时间 2023-10-05 15:58:03.218651 today1 datetime.utcnow() #…...
从0开始python学习-28.selenium 需要图片验证的登录
url https://test.com/login driver.get(url) # 获取登录页面需要输入账号密码进行模拟登录操作 user driver.find_element(By.XPATH,//*[id"login"]/div[2]/div/form[2]/div[2]/div/div/input).send_keys(username) pwd driver.find_element(By.XPATH,//*[id&qu…...
Nginx搭建Rtmp流媒体服务,并使用Ffmpeg推流
文章目录 1.rtmp流媒体服务框架图2.nginx配置3.配置nginx4.使用ffmpeg推流5.实时推摄像头流 本项目在开发板上使用nginx搭建流媒体服务,利用ffmpeg进行推流,在pc上使用vlc media进行拉流播放。 1.rtmp流媒体服务框架图 2.nginx配置 下载:wge…...
IDEA 将一个普通Java工程转化为maven工程
打开IntelliJ IDEA并打开Java工程。 在项目窗口中,右键单击项目名称,选择“Add Framework Support”。 在弹出的窗口中,选择“Maven”。 在“Maven Information”窗口中,填写Group Id、Artifact Id和Version等基本信息。 点击…...
linux下的永久保存行号
linux下的永久保存行号 1.首先 这里是引用 输入命令:vi ~/.vimrc 其次 这里是引用 输入命令 set number...
92岁高龄的创始人张忠谋谈台积电发展史
一、张忠谋和台积电 在台北一间办公室里,张忠谋最近拿出一本印有彩色图案的旧书。它的标题是《VLSI 系统导论》,这是一本研究生水平的教科书,描述了计算机芯片设计的复杂性。92岁的张先生满怀敬意地举起它。 92岁高龄的台积电创始人张忠谋 “…...
【VIM】VIm初步使用
玩转Vim-从放弃到入门_哔哩哔哩_bilibili...
教育类《中学政史地》收稿方向-投稿邮箱
教育类《中学政史地》收稿方向-投稿邮箱 《中学政史地》收稿方向:中学政治、历史、地理类稿件 《中学政史地》创办于1987年,是我国唯一一份集中学政治、历史、地理三门学科为一体的综合性月刊。每月两期,分初中版和高中版。以服务学生、服务…...
数据库的备份与恢复
数据备份的重要性 备份的主要目的是灾难恢复。 在生产环境中,数据的安全性至关重要。 任何数据的丢失都可能产生严重的后果。 造成数据丢失的原因: 程序错误人为操作错误运算错误磁盘故障灾难(如火灾、地震)和盗窃 数据库备份…...
string类的模拟实现(万字讲解超详细)
目录 前言 1.命名空间的使用 2.string的成员变量 3.构造函数 4.析构函数 5.拷贝构造 5.1 swap交换函数的实现 6.赋值运算符重载 7.迭代器部分 8.数据容量控制 8.1 size和capacity 8.2 empty 9.数据修改部分 9.1 push_back 9.2 append添加字符串 9.3 运算符重载…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...
深度解析:etcd 在 Milvus 向量数据库中的关键作用
目录 🚀 深度解析:etcd 在 Milvus 向量数据库中的关键作用 💡 什么是 etcd? 🧠 Milvus 架构简介 📦 etcd 在 Milvus 中的核心作用 🔧 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...
以太网PHY布局布线指南
1. 简介 对于以太网布局布线遵循以下准则很重要,因为这将有助于减少信号发射,最大程度地减少噪声,确保器件作用,最大程度地减少泄漏并提高信号质量。 2. PHY设计准则 2.1 DRC错误检查 首先检查DRC规则是否设置正确,然…...
