当前位置: 首页 > news >正文

算法-动态规划/trie树-单词拆分

算法-动态规划/trie树-单词拆分

1 题目概述

1.1 题目出处

https://leetcode.cn/problems/word-break/description/?envType=study-plan-v2&envId=top-interview-150

1.2 题目描述

在这里插入图片描述

2 动态规划

2.1 解题思路

  1. dp[i]表示[0, i)字符串可否构建
  2. 那么dp[i]可构建的条件是,[0,j)可构建且[j,i)包含在wordDict中
  3. 这里你可能会问,那如果是[j,i)不能直接构建,而是有wordDict种的两个单词构建怎么办?其实,因为我们是从低到高构建的动态规划,所以设k > j 且 k <i,那么dp[k] = true,因为dp[j]=true且 [j,k)在wordDict中。那么 [k, i)就是剩下的那个单词了,所以 [j,i)也可以被构建。

2.2 代码

class Solution {public boolean wordBreak(String s, List<String> wordDict) {// dp[i]表示[0, i)字符串可否构建// 那么dp[i]可构建的条件是,[0,j)可构建且[j,i)包含在wordDict中boolean[] dp = new boolean[s.length() + 1];dp[0] = true;Set<String> set = new HashSet<>(wordDict);for (int i = 1; i <= s.length(); i++) {for (int j = 0; j < i; j++) {if (dp[j] == true && set.contains(s.substring(j, i))) {dp[i] = true;break;}}}return dp[s.length()];}
}

2.3 时间复杂度

O(c*s.length)
在这里插入图片描述

2.4 空间复杂度

O( s.length)

3 trie树

3.1 解题思路

  1. 将wordDict构建trie树
  2. 将s从位置0开始往后匹配查找
  3. 如果当前位置能匹配上,继续判断是否是单词结尾,如果是且下一个单词开始的匹配也能成功,就说明能构建,返回true
  4. 其他情况继续往后匹配

3.2 代码

class Solution {Trie root = new Trie();// 记忆数组,用来快速判定该位置是否可以作为单词结尾进行拆分构建boolean[] no = new boolean[300];public boolean wordBreak(String s, List<String> wordDict) {// 将所有word插入字典树for (String word : wordDict)root.insert(word);// 从0个字符开始往后查找,只要匹配成功说明可以构建目标字符串if (root.find(s, 0)) {return true;}return false;}class Trie{public Trie[] children = new Trie[26];// 当前child代表的字符是否是单词结尾boolean isEnd = false;public void insert(String word) {if (null == word || word.length() == 0) {isEnd = true;return;}int index = word.charAt(0) - 'a';Trie child = children[index];if (null == child) {child = new Trie();children[index] = child;}child.insert(word.substring(1));}public boolean find(String s, int i) {// 快速判定当前字符位置是否可以拆分构建// 注意这里必须判定当前节点是否是root,因为我们缓存是从根节点开始的// 否则会对其他child的正常判断过程造成误判if (this == root && no[i]) {return false;}char firstC = s.charAt(i);Trie child = children[firstC - 'a'];if (null == child) {// 如果不能匹配指定位置字符,肯定不可构建if (this == root) {no[i] = true;}return false;}if (child.isEnd) {// 如果能找到目标字符,且字符是单词结尾if (i + 1 == s.length()) {// 如果// 1.已经扫描到字符串最后的字符// 就说明当前位置可以用来拆分构建目标字符串return true;} else {if (root.find(s, i+1)) {// 如果下一个字符往后的字符串能构建// 就说明当前位置可以用来拆分构建目标字符串return true;} else {// 否则说明i+1字符虽是单词结尾,但无法直接拆分构建,记录下来no[i+1] = true;}}}if (i + 1 < s.length()) {// 还未到结尾,可以继续往后查找return child.find(s, i+1);} else {// 已到单词结尾,构建失败return false;}}}
}

3.3 时间复杂度

在这里插入图片描述

3.4 空间复杂度

O(s.length)

参考

  • 循序渐进5种解法,从字典树trie回溯延伸到动态规划

相关文章:

算法-动态规划/trie树-单词拆分

算法-动态规划/trie树-单词拆分 1 题目概述 1.1 题目出处 https://leetcode.cn/problems/word-break/description/?envTypestudy-plan-v2&envIdtop-interview-150 1.2 题目描述 2 动态规划 2.1 解题思路 dp[i]表示[0, i)字符串可否构建那么dp[i]可构建的条件是&…...

React框架核心原理

一、整体架构 三大核心库与对应的组件 history -> react-router -> react-router-dom react-router 可视为react-router-dom 的核心&#xff0c;里面封装了<Router>&#xff0c;<Route>&#xff0c;<Switch>等核心组件,实现了从路由的改变到组件的更新…...

python-pytorch 利用pytorch对堆叠自编码器进行训练和验证

利用pytorch对堆叠自编码器进行训练和验证 一、数据生成二、定义自编码器模型三、训练函数四、训练堆叠自编码器五、将已训练的自编码器级联六、微调整个堆叠自编码器 一、数据生成 随机生成一些数据来模拟训练和验证数据集&#xff1a; import torch# 随机生成数据 n_sample…...

制作 3 档可调灯程序编写

PWM 0~255 可以将数据映射到0 75 150 225 尽可能均匀电压间隔...

源码分享-M3U8数据流ts的AES-128解密并合并---GoLang实现

之前使用C语言实现了一次&#xff0c;见M3U8数据流ts的AES-128解密并合并。 学习了Go语言后&#xff0c;又用Go重新实现了一遍。源码如下&#xff0c;无第三方库依赖。 package mainimport ("crypto/aes""crypto/cipher""encoding/binary"&quo…...

CSDN Q: “这段代码算是在STC89C52RC51单片机上完成PWM呼吸灯了吗?“

这是 CSDN上的一个问题 这段代码算是在STC89C52RC51单片机上完成PWM呼吸灯了吗&#xff0c;还是说得用上定时器和中断函数#include <regx52.h> 我个人认为: 效果上来说, 是的! 码以 以Time / 100-Time 调 Duty, 而 for i loop成 Period, 加上延时, 实现了 PWM周期, 虽然…...

Linux系统编程系列之线程池

Linux系统编程系列&#xff08;16篇管饱&#xff0c;吃货都投降了&#xff01;&#xff09; 1、Linux系统编程系列之进程基础 2、Linux系统编程系列之进程间通信(IPC)-信号 3、Linux系统编程系列之进程间通信(IPC)-管道 4、Linux系统编程系列之进程间通信-IPC对象 5、Linux系统…...

Linux CentOS7 vim多文件与多窗口操作

窗口是可视化的分割区域。Windows中窗口的概念与linux中基本相同。连接xshell就是在Windows中新建一个窗口。而vim打开一个文件默认创建一个窗口。同时&#xff0c;Vim打开一个文件也就会建立一个缓冲区&#xff0c;打开多个文件就会创建多个缓冲区。 本文讨论vim中打开多个文…...

SPI 通信协议

1. SPI通信 1. 什么是SPI通信协议 2. SPI的通信过程 在一开始会先把发送缓冲器的数据&#xff08;8位&#xff09;。一次性放到移位寄存器里。 移位寄存器会一位一位发送出去。但是要先放到锁存器里。然后从机来读取。从机的过程也一样。当移位寄存器的数据全部发送完。其实…...

【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

5个适合初学者的初级网络安全工作,网络安全就业必看

前言 网络安全涉及保护计算机系统、网络和数据免受未经授权的访问、破坏和盗窃 - 防止数字活动和数据访问的中断 - 同时也保护用户的资产和隐私。鉴于公共事业、医疗保健、金融以及联邦政府等行业的网络犯罪攻击不断升级&#xff0c;对网络专业人员的需求很高&#xff0c;这并…...

Kafka核心原理

1、Topic的分片和副本机制 分片作用&#xff1a; 解决单台节点容量有限的问题&#xff0c;节点多&#xff0c;效率提升&#xff0c;吞吐量提升。通过分片&#xff0c;将一个大的容器分解为多个小的容器&#xff0c;分布在不同的节点上&#xff0c;从而实现分布式存储。 分片…...

探秘前后端开发世界:猫头虎带你穿梭编程的繁忙街区,解锁全栈之路

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

洛谷_分支循环

p2433 问题 5 甲列火车长 260 米&#xff0c;每秒行 12 米&#xff1b;乙列火车长220 米&#xff0c;每秒行 20 米&#xff0c;两车相向而行&#xff0c;从两车车头相遇时开始计时&#xff0c;多长时间后两车车尾相离&#xff1f;已知答案是整数。 计算方式&#xff1a;两车车…...

MySQL数据库入门到精通——进阶篇(3)

黑马程序员 MySQL数据库入门到精通——进阶篇&#xff08;3&#xff09; 1. 锁1.1 锁-介绍1.2 锁-全局锁1.3 锁-表级锁1.3.1 表级锁-表锁1.3.2 表级锁元数据锁( meta data lock&#xff0c;MDL)1.3.3 表级锁-意向锁1.3.4 表级锁意向锁测试 1.4 锁-行级锁1.4.1 行级锁-行锁1.4.2…...

Mind Map:大语言模型中的知识图谱提示激发思维图10.1+10.2

知识图谱提示激发思维图 摘要介绍相关工作方法第一步&#xff1a;证据图挖掘第二步&#xff1a;证据图聚合第三步&#xff1a;LLM Mind Map推理 实验实验设置医学问答长对话问题使用KG的部分知识生成深入分析 总结 摘要 LLM通常在吸收新知识的能力、generation of hallucinati…...

[引擎开发] 杂谈ue4中的Vulkan

接触Vulkan大概也有大半年&#xff0c;概述一下自己这段时间了解到的东西。本文实际上是杂谈性质而非综述性质&#xff0c;带有严重的主观认知&#xff0c;因此并没有那么严谨。 使用Vulkan会带来什么呢&#xff1f;简单来说就是对底层更好的控制。这意味着我们能够有更多的手段…...

docker--redis容器部署及地理空间API的使用示例-II

文章目录 Redis 地理位置类型API命令操作示例JAVA使用示例导入依赖RedisTemplate 操作GeoData示例CityInfo实体类Geo操作接口类Geo操作接口实现类SpringBoot测试类RedissonClient 操作GeoData示例docker–redis容器部署及与SpringBoot整合 docker–redis容器部署及地理空间API的…...

Vue中如何进行文件浏览与文件管理

Vue中的文件浏览与文件管理 文件浏览与文件管理是许多Web应用程序中常见的功能之一。在Vue.js中&#xff0c;您可以轻松地实现文件浏览和管理功能&#xff0c;使您的应用程序更具交互性和可用性。本文将向您展示如何使用Vue.js构建文件浏览器和文件管理功能&#xff0c;以及如…...

jenkins利用插件Active Choices Plug-in达到联动显示或隐藏参数,且参数值可修改

1. 添加组件 Active Choices Plug-in 如jenkins无法联网&#xff0c;可在以下两个地址中下载插件&#xff0c;然后放到/home/jenkins/.jenkins/plugin下面重启jenkins即可 Active Choices Active Choices | Jenkins plugin 2. 效果如下&#xff1a; sharding为空时&#xf…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...