【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
使用各向异性滤波器和图像分割技术进行MRI图像处理,可以有效地检测脑肿瘤的存在、位置、区域和边界。
摘要
脑肿瘤是一种致命的疾病,没有MRI技术,无法可靠地检测到。在这个项目中,我们尝试使用MATLAB模拟从MRI图像中检测患者大脑是否存在肿瘤。为了为MRI图像的形态学操作铺平道路,我们首先使用各向异性扩散滤波器对图像进行滤波,以降低像素之间的对比度。然后,我们调整图像大小,并手动将其转换为黑白图像,通过阈值处理来初步筛选出肿瘤可能存在的区域。
在这个半处理的图像形态学操作上,我们利用有关肿瘤大小和合理位置的信息进行进一步处理。这两个参数的最小值是根据包含肿瘤的不同MRI图像的统计平均值确定的。然后,我们使用这些参数来提供最终的检测结果。
尽管这个模拟程序在大多数情况下可以给出准确的结果,但对于过小的肿瘤或具有中空结构的肿瘤,它可能无法执行。
这个项目的更大目标是建立一个包含从不同角度拍摄的特定人类MRI图像中的肿瘤2D图像数据的数据库,并通过对这些图像进行分析来确定肿瘤的精确3D位置。为了实现这一目标,我们已经开发了2D肿瘤检测和分割方法,以提高准确性,从而使3D检测更加可靠。这是项目的主要目标。
📚2 运行结果




部分代码:
figure
imshow(erodedImage);
title('eroded image','FontSize',20);%% subtracting eroded image from original BW imagetumorOutline=tumor;
tumorOutline(erodedImage)=0;figure;
imshow(tumorOutline);
title('Tumor Outline','FontSize',20);%% Inserting the outline in filtered image in green colorrgb = inp(:,:,[1 1 1]);
red = rgb(:,:,1);
red(tumorOutline)=255;
green = rgb(:,:,2);
green(tumorOutline)=0;
blue = rgb(:,:,3);
blue(tumorOutline)=0;tumorOutlineInserted(:,:,1) = red;
tumorOutlineInserted(:,:,2) = green;
tumorOutlineInserted(:,:,3) = blue; figure
imshow(tumorOutlineInserted);
title('Detected Tumer','FontSize',20);%% Display Togetherfigure
subplot(231);imshow(s);title('Input image','FontSize',20);
subplot(232);imshow(inp);title('Filtered image','FontSize',20);subplot(233);imshow(inp);title('Bounding Box','FontSize',20);
hold on;rectangle('Position',wantedBox,'EdgeColor','y');hold off;subplot(234);imshow(tumor);title('tumor alone','FontSize',20);
subplot(235);imshow(tumorOutline);title('Tumor Outline','FontSize',20);
subplot(236);imshow(tumorOutlineInserted);title('Detected Tumor','FontSize',20);
figure
imshow(erodedImage);
title('eroded image','FontSize',20);
%% subtracting eroded image from original BW image
tumorOutline=tumor;
tumorOutline(erodedImage)=0;
figure;
imshow(tumorOutline);
title('Tumor Outline','FontSize',20);
%% Inserting the outline in filtered image in green color
rgb = inp(:,:,[1 1 1]);
red = rgb(:,:,1);
red(tumorOutline)=255;
green = rgb(:,:,2);
green(tumorOutline)=0;
blue = rgb(:,:,3);
blue(tumorOutline)=0;
tumorOutlineInserted(:,:,1) = red;
tumorOutlineInserted(:,:,2) = green;
tumorOutlineInserted(:,:,3) = blue;
figure
imshow(tumorOutlineInserted);
title('Detected Tumer','FontSize',20);
%% Display Together
figure
subplot(231);imshow(s);title('Input image','FontSize',20);
subplot(232);imshow(inp);title('Filtered image','FontSize',20);
subplot(233);imshow(inp);title('Bounding Box','FontSize',20);
hold on;rectangle('Position',wantedBox,'EdgeColor','y');hold off;
subplot(234);imshow(tumor);title('tumor alone','FontSize',20);
subplot(235);imshow(tumorOutline);title('Tumor Outline','FontSize',20);
subplot(236);imshow(tumorOutlineInserted);title('Detected Tumor','FontSize',20);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]周子又,刘奇,任静.基于MRI脑肿瘤的滤波方法与分割技术对比研究[J].中国医学影像学杂志, 2015, 23(7):5.DOI:10.3969/j.issn.1005-5185.2015.07.020.
[2]周子又,刘奇,任静.基于MRI脑肿瘤的滤波方法与分割技术对比研究[J].中国医学影像学杂志, 2015(007):000.
[3]曾文权,何拥军,崔晓坤.基于各向异性滤波和空间FCM的MRI图像分割方法[J].计算机应用研究, 2014, 31(1):5.DOI:10.3969/j.issn.1001-3695.2014.01.075.
🌈4 Matlab代码实现
相关文章:
【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
5个适合初学者的初级网络安全工作,网络安全就业必看
前言 网络安全涉及保护计算机系统、网络和数据免受未经授权的访问、破坏和盗窃 - 防止数字活动和数据访问的中断 - 同时也保护用户的资产和隐私。鉴于公共事业、医疗保健、金融以及联邦政府等行业的网络犯罪攻击不断升级,对网络专业人员的需求很高,这并…...
Kafka核心原理
1、Topic的分片和副本机制 分片作用: 解决单台节点容量有限的问题,节点多,效率提升,吞吐量提升。通过分片,将一个大的容器分解为多个小的容器,分布在不同的节点上,从而实现分布式存储。 分片…...
探秘前后端开发世界:猫头虎带你穿梭编程的繁忙街区,解锁全栈之路
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
洛谷_分支循环
p2433 问题 5 甲列火车长 260 米,每秒行 12 米;乙列火车长220 米,每秒行 20 米,两车相向而行,从两车车头相遇时开始计时,多长时间后两车车尾相离?已知答案是整数。 计算方式:两车车…...
MySQL数据库入门到精通——进阶篇(3)
黑马程序员 MySQL数据库入门到精通——进阶篇(3) 1. 锁1.1 锁-介绍1.2 锁-全局锁1.3 锁-表级锁1.3.1 表级锁-表锁1.3.2 表级锁元数据锁( meta data lock,MDL)1.3.3 表级锁-意向锁1.3.4 表级锁意向锁测试 1.4 锁-行级锁1.4.1 行级锁-行锁1.4.2…...
Mind Map:大语言模型中的知识图谱提示激发思维图10.1+10.2
知识图谱提示激发思维图 摘要介绍相关工作方法第一步:证据图挖掘第二步:证据图聚合第三步:LLM Mind Map推理 实验实验设置医学问答长对话问题使用KG的部分知识生成深入分析 总结 摘要 LLM通常在吸收新知识的能力、generation of hallucinati…...
[引擎开发] 杂谈ue4中的Vulkan
接触Vulkan大概也有大半年,概述一下自己这段时间了解到的东西。本文实际上是杂谈性质而非综述性质,带有严重的主观认知,因此并没有那么严谨。 使用Vulkan会带来什么呢?简单来说就是对底层更好的控制。这意味着我们能够有更多的手段…...
docker--redis容器部署及地理空间API的使用示例-II
文章目录 Redis 地理位置类型API命令操作示例JAVA使用示例导入依赖RedisTemplate 操作GeoData示例CityInfo实体类Geo操作接口类Geo操作接口实现类SpringBoot测试类RedissonClient 操作GeoData示例docker–redis容器部署及与SpringBoot整合 docker–redis容器部署及地理空间API的…...
Vue中如何进行文件浏览与文件管理
Vue中的文件浏览与文件管理 文件浏览与文件管理是许多Web应用程序中常见的功能之一。在Vue.js中,您可以轻松地实现文件浏览和管理功能,使您的应用程序更具交互性和可用性。本文将向您展示如何使用Vue.js构建文件浏览器和文件管理功能,以及如…...
jenkins利用插件Active Choices Plug-in达到联动显示或隐藏参数,且参数值可修改
1. 添加组件 Active Choices Plug-in 如jenkins无法联网,可在以下两个地址中下载插件,然后放到/home/jenkins/.jenkins/plugin下面重启jenkins即可 Active Choices Active Choices | Jenkins plugin 2. 效果如下: sharding为空时…...
香蕉叶病害数据集
1.数据集 第一个文件夹为数据增强(旋转平移裁剪等操作)后的数据集 第二个文件夹为原始数据集 2.原始数据集 Cordana文件夹(162张照片) healthy文件夹(129张) Pestalotiopsis文件夹(173张照片&…...
天地无用 - 修改朋友圈的定位: 高德地图 + 爱思助手
1,电脑上打开高德地图网页版 高德地图 (amap.com) 2,网页最下一栏,点击“开放平台” 高德开放平台 | 高德地图API (amap.com) 3,在新网页中,需要登录高德账户才能操作。 可以使用手机号和验证码登录。 4,…...
AtCoder Beginner Contest 232(A-G)
A - QQ solver (atcoder.jp)直接按题意模拟即可。 B - Caesar Cipher (atcoder.jp)按题意模拟即可 C - Graph Isomorphism (atcoder.jp)按题意模拟即可 D - Weak Takahashi (atcoder.jp) 一个非常套路的网格dp E - Rook Path (atcoder.jp) (1)题意 有…...
计算机网络(第8版)-第5章 运输层
5.1 运输层协议概述 5.1.1 进程之间的通信 图5-1 中两个运输层之间有一个深色双向粗箭头,写明“运输层提供应用进程间的逻辑通信”。 图5-1 运输层为相互通信的应用进程提供了逻辑通信 5.1.2 运输层的两个主要协议 5.1.3 运输层的端口 请注意,这种…...
AtCoder Beginner Contest 231(D-F,H)
D - Neighbors (atcoder.jp) (1)题意 给出M组关系,问是否有一个排列,能表示A[i]和B[i]相邻 (2)思路 考虑如果有环,显然不能满足排列,因为排列中度数最多为2,若有超过2的显…...
【Python】map
map()函数是Python内置函数之一,它的主要作用是将一个函数应用于可迭代对象中的每个元素,并返回一个包含结果的迭代器。 map()函数的语法如下: map(function, iterable)function参数是一个函数,表示要应用于可迭代对象每个元素的…...
Swift 5.9 与 SwiftUI 5.0 中新 Observation 框架应用之深入浅出
0. 概览 Swift 5.9 一声炮响为我们带来全新的宏(Macro)机制,也同时带来了干霄凌云的 Observation 框架。 Observation 框架可以增强通用场景下的使用,也可以搭配 SwiftUI 5.0 而获得双剑合璧的更强威力。 在本篇博文,…...
【已解决】在 Vite 项目中使用 eslint-config-ali 时遇到的解析错误
错误还原 搭建 Vite 项目 pnpm create vite my-vue-app --template vue-ts安装 eslint-config-ali pnpm i -D eslint-config-ali typescript-eslint/parser typescript-eslint/eslint-plugin eslint-plugin-import eslint-import-resolver-typescript vue-eslint-parser esl…...
蓝桥杯每日一题2023.10.5
3420. 括号序列 - AcWing题库 题目描述 题目分析 对于这一我们需要有前缀知识完全背包 完全背包的朴素写法: #include<bits/stdc.h> using namespace std; const int N 1010; int n, m, v[N], w[N], f[N][N]; int main() {cin >> n >> m;fo…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

