当前位置: 首页 > news >正文

信号的运算与变换

目录

前言

本章内容介绍

信号的运算与变换

相加

相乘

时移

反折

尺度变换

微分(差分)

积分(累加)

信号的奇偶求解

信号的实虚分解

合适的例题

1、时移+反折

2、时移+尺度

3、时移+反折+尺度

4、反求x(t)


前言

《信号与系统》是一门很难的课,也是许多学校考研要考的专业课,由于每周只有两节课,所以每次上完都要及时的去复习,这里参考的教材是奥本海姆著作,刘海棠译,北京:电子工业出版社,2013年。

本章内容介绍

信号与系统分析当中一个重要的概念是关于信号的变化概念。例如,在飞机控制系统中对应于驾驶员动作的信号,经由电和机械的系统变换为飞行推力或飞机控制翼面(如舵或副翼)位置上的改变,进而再进过该机体的动力学和运动学原来变换为飞机速度和航行上的方向上的变化。在这里,我们只关注很有限但很重要的几种最基本的信号变换,且只涉及自变量的简单变换。

信号的运算与变换

在信号的传输及处理过程中往往需要进行信号的运算,包括相加、相乘、移位、反折、尺度变换、以及(微分)差分和积分(累加)等等。

  • 相加

两个(或多个)信号之和构成另一个信号,它在任意瞬间的值等于两个或多个信号在同一瞬间的代数和。

连续:x(t)=x1(t)+x2(t)

离散:y[n]=x1[n]+x2[n]

这里就是对应的地方进行相加,只是需要注意离散只有整数有效。

  • 相乘

指的是两个(或多个)信号相乘构成另一个信号时,把所有相同瞬间的值一一相乘。

连续:x(t)=x1(t)x2(t)

离散:y[n]=x1[n]x2[n]

与相加有些相同,对应的部分对其进行相乘。

  • 时移

遵循一个原则"左加右减",且时移后,形状、幅度不变。

连续信号x(t),设t0>0

x(t-t0),则原信号向右平移t0时间;

x(t-t0),则原信号向左平移t0时间;

离散信号x[n],当m>0

x[n-m]:右移m位

x[n+m]:左移m位

  • 反折

即为x(-t),将x(t)沿纵坐标进行反折。

实际就是沿着y轴方向进行对称绘制。

  • 尺度变换

将信号x(t)的自变量乘以正系数a为x(at),则:

a>1,将波形进行压缩;

a<1,将波形进行扩展;

压缩和扩展提现在x轴上。

举一个实例:

若x(t)是已录制声音的磁带:

x(-t)表示磁带倒转播放产生的信号

x(2t)表示磁带以二倍速加快播放的结果

x(t/2)表示原磁带放音速度降至一半产生的信号

  • 微分(差分)

微分(Differential)x'(t)={\frac{\mathrm{d} }{\mathrm{d} x}}{x(t)}

差分(Difference)

一阶前向差分定义为:\bigtriangleup x[n]=x[n+1]-x[n]

一阶后向差分定义为:\bigtriangledown x[n]=x[n]-x[n-1]

  • 积分(累加)

积分(Integration)y(t)=\int_{-\infty}^{t}x(\tau )d\tau

累加(accumulation)y[n]=\sum _{k=-\infty}^{n}x[k]

  • 信号的奇偶求解

对于连续信号:x(t)=x_{e}(t)+x_{o}(t)

x_{e}(-t)=x_{e}(t) ,x_{o}(-t)=-x_{o}(t)

则有:x(-t)=x_{e}(-t)+x_{o}(-t)=x_{e}(t)-x_{o}(t)

有上面的式子,可以有这样的结论:

x_{e}(t)=\frac{1}{2}[x(t)+x(-t)]

x_{o}(t)=\frac{1}{2}[x(t)-x(-t)]

对于离散信号也是同样如此。

信号与其偶分量和奇分量之间还满足以下能量关系:

连续信号:

\int _{-\infty}^{\infty}x^{2}(t)dt=\int _{-\infty}^{\infty}x_{e}^{2}(t)dt+\int _{-\infty}^{\infty}x_{o}^{2}(t)dt

离散信号:

\sum _{n=-\infty}^{\infty}x^{2}[n]dt=\sum _{k=-\infty}^{\infty}x_{e}^{2}[n]dt+\sum _{k=-\infty}^{\infty}x_{o}^{2}[n]dt

例题:已知下图为x(t),求x_{e}(t)x_{o}(t):

  • 信号的实虚分解

x(t)=\alpha(t) +j\beta(t)

x^{*}(t)=\alpha(t) -j\beta(t)

则:\alpha(t)=\frac{x(t) +x^{*}(t)}{2} 

 \beta (t)=\frac{x(t) -x^{*}(t)}{2j}

合适的例题

既然已经了解了上面的知识,做做这里的例题巩固一下吧。

1、时移+反折

求:x(-t+2)

2、时移+尺度

求:x(3t-2)

 

3、时移+反折+尺度

求:x(-3t-2)

 

4、反求x(t)

 解1:反折-尺度-时移

解2:令\tau =-3t-2

相关文章:

信号的运算与变换

目录 前言 本章内容介绍 信号的运算与变换 相加 相乘 时移 反折 尺度变换 微分&#xff08;差分&#xff09; 积分&#xff08;累加&#xff09; 信号的奇偶求解 信号的实虚分解 合适的例题 1、时移反折 2、时移尺度 3、时移反折尺度 4、反求x(t) 前言 《信号…...

【GO】K8s 管理系统项目9[API部分--Secret]

K8s 管理系统项目[API部分–Secret] 1. 接口实现 service/dataselector.go // secret type secretCell corev1.Secretfunc (s secretCell) GetCreation() time.Time {return s.CreationTimestamp.Time }func (s secretCell) GetName() string {return s.Name }2. Secret功能…...

ESP32 Arduino EspNow点对点双向通讯

ESP32 Arduino EspNow点对点双向通讯✨本案例分别采用esp32和esp32C3之间点对点单播无线通讯方式。 &#x1f33f;esp32开发板 &#x1f33e;esp32c3开发板 &#x1f527;所需库(需要自行导入到Arduino IDE library文件夹中&#xff0c;无法在IDE 管理库界面搜索下载到该库)&am…...

Linux SID 开发指南

Linux SID 开发指南 1 前言 1.1 编写目的 介绍Linux 内核中基于Sunxi 硬件平台的SID 模块驱动的详细设计&#xff0c;为软件编码和维护提供基 础。 1.2 适用范围 内核版本Linux-5.4, Linux-4.9 的平台。 1.3 相关人员 SID 驱动、Efuse 驱动、Sysinfo 驱动的维护、应用开…...

Matlab进阶绘图第2期—线型热图

线型热图由共享X轴的多条渐变直线组成&#xff0c;其颜色表示某一特征值。 与传统热图相比&#xff0c;线型热图适应于X轴数据远多于Y轴&#xff08;条数&#xff09;的情况&#xff0c;可以很好地对不同组数据间的分布情况进行比较&#xff0c;也因此可以在一些期刊中看到它的…...

【Redis中bigkey你了解吗?bigkey的危害?】

一.Redis中bigkey你了解吗&#xff1f;bigkey的危害&#xff1f; 如果面试官问到了这个问题&#xff0c;不必惊慌&#xff0c;接下来我们从什么是bigkey&#xff1f;bigkey划分的类型&#xff1f;bigkey危害之处&#xff1f; 二.什么是bigkey&#xff1f;会有什么影响&#xff…...

C++回顾(一)——从C到C++

前言 在学习了C语言的基础上&#xff0c;C到底和C有什么区别呢&#xff1f; 1.1 第一个C程序 #include <iostream>// 使用名为std的命名空间 using namespace std;int main() {// printf ("hello world\n");// cout 标准输出 往屏幕打印内容 相当于C语言的…...

CRF条件随机场 | 关键原理+面试知识点

😄 CRF之前跟人生导师:李航学习过,这里结合自己的理解,精简一波CRF,总结一下面试中高频出现的要点。个人觉得没网上说的那么复杂,我看网上很大部分都是一长篇先举个例子,然后再说原理。没必要原理其实不难,直接从原理下手更好理解。 文章目录 1、概率无向图(马尔可夫…...

秒懂算法 | 回归算法中的贝叶斯

在本文中,我们会用概率的观点来看待机器学习模型,用简单的例子帮助大家理解判别式模型和生成式模型的区别。通过思考曲线拟合的问题,发现习以为常的损失函数和正则化项背后有着深刻的意义 01、快速理解判别式模型和生成式模型 从概率的角度来理解数据有着两个不同的角度,假…...

用Netty实现物联网01:XML-RPC和JSON-RPC

最近十年,物联网和云计算、人工智能等技术一道,受到业内各方追捧,被炒得火热,甚至还诞生了AIoT这样的技术概念。和(移动)互联网不同,物联网针对的主要是一些资源有限的硬件设备,比如监控探头、烟雾感应器、温湿度感应器、车载OBD诊断器、智能电表、智能血压计等。这些硬…...

腾讯云服务器centos7安装python3.7+,解决ssl问题

使用requests模块访问百度&#xff0c;报错如下&#xff1a; requests.exceptions.SSLError: HTTPSConnectionPool(hostwww.baidu.com, port443): Max retries exceeded with url: / (Caused by SSLError("Cant connect to HTTPS URL because the SSL module is not avail…...

C++【模板STL简介】

文章目录C模板&&STL初阶一、泛型编程二、函数模板2.1.函数模板概念2.2.函数模板格式2.3.函数模板的实例化2.4.模板参数的匹配原则三、 类模板3.1.模板的定义格式3.2.类模板的实例化STL简介一、STL的概念、组成及缺陷二、STL的版本C模板&&STL初阶 一、泛型编程…...

该学会是自己找bug了(vs调试技巧)

前言 &#x1f388;个人主页:&#x1f388; :✨✨✨初阶牛✨✨✨ &#x1f43b;推荐专栏: &#x1f354;&#x1f35f;&#x1f32f; c语言初阶 &#x1f511;个人信条: &#x1f335;知行合一 &#x1f349;本篇简介:>:介绍c语言初阶的最后一篇.有关调试的重要性. 金句分享…...

Redis大全(概念与下载安装)

目录 一、概念 1.非关系型数据库&#xff08;NoSQL&#xff09;的介绍 2.什么是redis 3.redis的作者 4.Redis的特点 5.redis的应用场景 6.高度概括知识 一、二 缓存穿透、缓存击穿、缓存雪崩的概念 &#xff08;一&#xff09;缓存穿透 &#xff08;二&#xff09;缓…...

指针的进阶【上篇】

文章目录&#x1f4c0;1.字符指针&#x1f4c0;2.指针数组&#x1f4c0;3.数组指针&#x1f4bf;3.1.数组指针的定义&#x1f4bf;3.2. &数组名VS数组名&#x1f4bf;3.3.数组指针的使用&#x1f4c0;1.字符指针 int main() {char ch w;char* pc &ch;// pc就是字符指…...

MATLAB | 如何用MATLAB绘制花里胡哨的山脊图

本期推送教大家如何绘制各种样式的山脊图&#xff0c;这里做了一个工具函数用来实现好看的山脊图的绘制&#xff0c;编写不易请多多点赞&#xff0c;大体绘制效果如下&#xff1a; 依旧工具函数放在文末。 教程部分 0 数据准备 数据为多个一维向量放在元胞数组中&#xff0c;…...

.Net与程序集

一个简单的C#程序回想一下我们第一个.net 程序 hello world&#xff0c;它具有那些步骤呢&#xff1f;打开visual studio创建一个C# console的项目build运行程序这时候就有一个命令行窗口弹出来&#xff0c;上面打印着hello world。我们打开文件夹的bin目录&#xff0c;会发现里…...

软考中级之数据库系统(重点)

涉及考点:数据库模式,ER模型,关系代数与元祖演算,规范化理论,并发控制,分布式数据库系统,数据仓库和数据挖掘 数据库模式 三级模式-二级映射 常考选择题 三级模式,两种映射的这种涉及属于层次架构体的设计,这种设计为我们在应用数据库的时候提供了很多便利,同时提高了整个体…...

界面控件DevExtreme的Data Grid组件——让业务信息管理更轻松!

DevExtreme拥有高性能的HTML5 / JavaScript小部件集合&#xff0c;使您可以利用现代Web开发堆栈&#xff08;包括React&#xff0c;Angular&#xff0c;ASP.NET Core&#xff0c;jQuery&#xff0c;Knockout等&#xff09;构建交互式的Web应用程序&#xff0c;该套件附带功能齐…...

【架构师】零基础到精通——网关策略

博客昵称&#xff1a;架构师Cool 最喜欢的座右铭&#xff1a;一以贯之的努力&#xff0c;不得懈怠的人生。 作者简介&#xff1a;一名退役Coder&#xff0c;软件设计师/鸿蒙高级工程师认证&#xff0c;在备战高级架构师/系统分析师&#xff0c;欢迎关注小弟&#xff01; 博主小…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...