深度学习基础 2D卷积(1)
什么是2D卷积

2D参数量怎么计算
以pytorch为例子,2D卷积在设置的时候具有以下参数,具有输入通道的多少(这个决定了卷积核的通道数量),滤波器数量,这个是有多少个滤波器,越多提取的特征就越有用,kernel_size,这个是卷积核的大小,相当于一个观测器的大小,越大参数越大其实是越强。
import torch
import torch.nn as nn# 创建一个输入张量,假设是一张3通道的4x4图像
# 输入通道数为3
input_tensor = torch.randn(1, 3, 4, 4) # (batch_size, in_channels, height, width)# 创建卷积层
# 输入通道数为3,输出通道数为16,卷积核大小为3x3,步幅为1,无填充
conv_layer = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=0)# 执行卷积操作
output_tensor = conv_layer(input_tensor)# 查看输出张量的形状
print("输出张量的形状:", output_tensor.shape)
Param # = (input_channels * output_channels * kernel_height * kernel_width) + output_channels
数字图像处理中的2D卷积与自己设计的2D卷积的区别
代码如下
import cv2
import numpy as np
import torch
import torch.nn as nn
import matplotlib.pyplot as plt# 创建一个随机的灰度图像
gray_image = np.random.rand(64, 64) * 255 # 生成0到255之间的随机灰度值
gray_image=cv2.imread("7.jpg",0)# 将灰度图像复制到RGB通道,创建彩色图像
color_image = cv2.cvtColor(gray_image.astype(np.uint8), cv2.COLOR_GRAY2RGB)# 定义一个锐化卷积核
# kernel = np.array([[-1, -1, -1],
# [-1, 9, -1],
# [-1, -1, -1]])/2 # 平均滤波器kernel = np.array([[ 0 , 1 , 0],[ 1 ,-4 , 1],[ 0 , 1 , 0]])*128 # 平均滤波器kernel = np.array([[ 1 , 1 , 1],[ 1 ,1 , 1],[ 1 , 1 , 1]])/9 # 平均滤波器 # 进行基本卷积操作、OpenCV卷积操作和锐化卷积操作
basic_result = cv2.filter2D(gray_image, -1, kernel)
opencv_conv_result = cv2.filter2D(gray_image, -1, kernel)
sharpened_image = cv2.filter2D(gray_image, -1, kernel)# 将灰度图像转换为PyTorch张量
gray_image_tensor = torch.from_numpy(gray_image).unsqueeze(0).unsqueeze(0).float() / 255.0# 创建一个卷积层,使用相同的卷积核
conv2d_layer = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3, padding=1, bias=False)
conv2d_layer.weight.data = torch.from_numpy(kernel).unsqueeze(0).unsqueeze(0).float()# 进行PyTorch的Conv2d卷积操作
pytorch_conv_result = conv2d_layer(gray_image_tensor).squeeze().detach().numpy()# 显示原始灰度图像、基本卷积结果、OpenCV卷积结果、锐化卷积结果和PyTorch卷积结果
plt.figure(figsize=(25, 5))
plt.subplot(1, 5, 1)
plt.title("Original Gray Image")
plt.imshow(gray_image, cmap='gray', vmin=0, vmax=255)plt.subplot(1, 5, 2)
plt.title("Basic Convolution")
plt.imshow(basic_result, cmap='gray', vmin=0, vmax=255)plt.subplot(1, 5, 3)
plt.title("OpenCV Convolution")
plt.imshow(opencv_conv_result, cmap='gray', vmin=0, vmax=255)# plt.subplot(1, 5, 4)
# plt.title("Sharpened Gray Image")
# plt.imshow(sharpened_image, cmap='gray', vmin=0, vmax=255)plt.subplot(1, 5, 4)
plt.title("PyTorch Convolution")
plt.imshow(pytorch_conv_result, cmap='gray', vmin=0, vmax=1)plt.show()
均值滤波结果如下

采用边缘检测算法结果如下

结果如下
从结果来看卷积似乎有些区别但是功能一致具体问题处在哪,以后再尝试
相关文章:
深度学习基础 2D卷积(1)
什么是2D卷积 2D参数量怎么计算 以pytorch为例子,2D卷积在设置的时候具有以下参数,具有输入通道的多少(这个决定了卷积核的通道数量),滤波器数量,这个是有多少个滤波器,越多提取的特征就越有用…...
OpenCV DNN C++ 使用 YOLO 模型推理
OpenCV DNN C 使用 YOLO 模型推理 引言 YOLO(You Only Look Once)是一种流行的目标检测算法,因其速度快和准确度高而被广泛应用。OpenCV 的 DNN(Deep Neural Networks)模块为我们提供了一个简单易用的 API࿰…...
第八章 Linux文件系统权限
目录 8.1 文件的一般权限 1.修改文件或目录的权限---chmod命令 2.对于文件和目录,r,w,x有不同的作用: 3.修改文件或目录的所属主和组---chown,chgrp 8.2 文件和目录的特殊权限 三种通过字符描述文件权限 8.3 ACL 权限 1.A…...
XXL-JOB源码梳理——一文理清XXL-JOB实现方案
分布式定时任务调度系统 流程分析 一个分布式定时任务,需要具备有以下几点功能: 核心功能:定时调度、任务管理、可观测日志高可用:集群、分片、失败处理高性能:分布式锁扩展功能:可视化运维、多语言、任…...
java做个qq机器人
前置的条件 机器人是基于mirai框架实现的。根据官方的文档,建议使用openjdk11。 我这里使用的编辑工具是idea2023 在idea中新建一个maven项目,虽然可以使用gradle进行构建,不过我这里由于网络问题没有跑通。 pom.xml <dependency>&l…...
前端 | AjaxAxios模块
文章目录 1. Ajax1.1 Ajax介绍1.2 Ajax作用1.3 同步异步1.4 原生Ajax 2. Axios2.1 Axios下载2.2 Axios基本使用2.3 Axios方法 1. Ajax 1.1 Ajax介绍 Ajax: 全称(Asynchronous JavaScript And XML),异步的JavaScript和XML。 1.2 Ajax作用 …...
高效的ProtoBuf
一、背景 Google ProtoBuf介绍 这篇文章我们讲了怎么使用ProtoBuf进行序列化,但ProtoBuf怎么做到最高效的,它的数据又是如何压缩的,下面先看一个例子,然后再讲ProtoBuf压缩机制。 二、案例 网上有各种序列化方式性能对比&#…...
删除SQL记录
删除记录的方式汇总: 根据条件删除:DELETE FROM tb_name [WHERE options] [ [ ORDER BY fields ] LIMIT n ] 全部删除(表清空,包含自增计数器重置):TRUNCATE tb_namedelete和truncate的区别: d…...
数据结构--》探索数据结构中的字符串结构与算法
本文将带你深入了解串的基本概念、表示方法以及串操作的常见算法。通过深入理解串的相关概念和操作,我们将能够更好地应用它们来解决算法问题。 无论你是初学者还是进阶者,本文将为你提供简单易懂、实用可行的知识点,帮助你更好地掌握串在数据…...
云安全之等级保护详解
等级保护概念 网络安全等级保护,是对信息系统分等级实行安全保护,对信息系统中使用的安全产品实行按等级管理,对信息系统中发生的信息安全事件分等级进行响应、处置。 网络安全等级保护的核心内容是:国家制定统一的政策、标准&a…...
VUE状态持久化,储存动态路由
1. vuex persistPlugin.js 文件 const routerKey "ROUTER_KEY";export default (store) > {// 刷新页面时,存储改变的数据window.addEventListener("beforeunload", () > {localStorage.setItem(routerKey, JSON.stringify(store.stat…...
微信小程序代驾系统源码(含未编译前端,二开无忧) v2.5
简介: 如今有越来越多的人在网上做代驾,打造一个代驾平台,既可以让司机增加一笔额外的收入,也解决了车主酒后不能开发的问题,代驾系统基于微信小程序开发的代驾系统支持一键下单叫代驾,支持代驾人员保证金…...
1797_GNU pdf阅读器evince
全部学习汇总: GreyZhang/g_GNU: After some years I found that I do need some free air, so dive into GNU again! (github.com) 近段时间经历了很多事情,终于想找一点技术上的自由气氛。或许,没有什么比GNU的一些软件探索更适合填充这样的…...
网络-跨域解决
文章目录 前言一、跨域是什么?二、跨域的解决1.JSONP2.前端代理dev环境3.后端设置请求头CORS4.运维nginx代理 总结 前言 本文主要介绍跨域问题介绍并提供了四种解决办法。 一、跨域是什么? 准确的来说是浏览器存在跨域问题,浏览器为了安全考…...
git提交代码的流程
1.拉取代码 当你进入了一家公司就需要拉去公司的代码进行开发,此时你的项目小组长会给你个地址拉代码, git clone 公司项目的地址 此时如果不使用了这个方式拉去代码,拉去的是master分支上的代码,但是很多数的情况下,公司的项目可能会在其它的分支上,因此到公…...
【SpringBoot】配置文件详解
配置文件详解 一. 配置文件作用二. 配置文件的格式1. properties 配置文件说明①. properties 基本语法②. 读取配置⽂件③. properties 缺点 2. yml 配置⽂件说明①. yml 基本语法②. yml 使用进阶 3. properties VS yml 三. 设置不同环境的配置⽂件 一. 配置文件作用 整个项…...
一文讲懂-五险一金
假设在“北京”:这里的数值并不代表任何真实的城市或地区,只是为了说明计算方法。 工资: 月工资为 6000 元。养老保险: 单位比例: 20% 个人比例: 8%医疗保险: 单位比例: 10% 个人比例: 2%失业保险: 单位比例: 2% 个人比例: 0.5%工伤保险: 单位比例: 0.5…...
判断三条边是否构成三角形(Python实现)
组成三角形的三条边a,b,c需满足条件: ab>c ac>b bc>a 已知:三角形任意三条边的长度之和大于第三条边。 解题:定义3个变量a、b、c,让用户输入任意三个数字赋值给三个变量。判断三个变量中是否任意两个之和大于第三个数值。 判断条件之…...
The directory ‘*‘ or its parent directory is not owned by the current user
python安装编译时出现如下错误 The directory /home/admin/.cache/pip/http or its parent directory is not owned by the current user and the cache has been disabled. Please check the permissions and owner of that directory. If executing pip with sudo, you may …...
leetcode做题笔记162. 寻找峰值
峰值元素是指其值严格大于左右相邻值的元素。 给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。 你可以假设 nums[-1] nums[n] -∞ 。 你必须实现时间复杂度为 O(…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
【题解-洛谷】P10480 可达性统计
题目:P10480 可达性统计 题目描述 给定一张 N N N 个点 M M M 条边的有向无环图,分别统计从每个点出发能够到达的点的数量。 输入格式 第一行两个整数 N , M N,M N,M,接下来 M M M 行每行两个整数 x , y x,y x,y,表示从 …...
