二叉树的顺序存储——堆——初识堆排序
前面我们学过可以把完全二叉树存入到顺序表中,然后利用完全二叉树的情缘关系,就可以通过数组下标来联系。

但是并不是把二叉树存入到数组中就是堆了,要看原原来的二叉树是否满足:所有的父都小于等于子,或者所有的父都大于等于子——既小堆大堆

现在我们用代码来实现数据存入到顺序表中,并且是小堆
首先需要创建一个顺序表的结构体

然后初始化
void HeapInit(Heap* php)//初始化
{assert(php);php->a = NULL;php->capacity = php->size = 0;
}
放入数据
首先要用指针开辟一块空间并判断是否需要扩容,然后把数据尾插进去
void HeapPush(Heap* php, HpDatatype x)//放入数据
{assert(php);//扩容if (php->capacity == php->size){int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;HpDatatype* tmp = (HpDatatype*)realloc(php->a, sizeof(HpDatatype)*newcapacity);if (tmp == NULL){perror("realloc fail");exit(-1);}php->a = tmp;php->capacity = newcapacity;}php->a[php->size] = x;php->size++;Adjust(php->a, php->size - 1);//调整
}
但是因为这个数组要满足小堆,所以尾插进去的数还需要进一步的调整

那么这里的代码是如何实现的呢

到这里的时候我们没插入一个数据就都可以把数据从新调整为一个堆,那么我们为什么要把数据按照堆的方式存储呢?
现在我们来写一个堆数据删除的代码就能感受到堆的作用:

void AdiustDown(HpDatatype* a, int n, int parent)
{int child = parent * 2 + 1;//先假设和根交换的是他的左儿子while (child<n)//当child=parent*2+1已经超出了数组的范围,那么就说明他下面已经没有儿子了,此时也是结束循环{if (child+1<n && a[child + 1] < a[child])//如果假设错误,那么就换成右儿子,但是这里要注意的child+1(右儿子)存在{child++;}if (a[child] < a[parent])//判断是否需要换{Swap(&a[child], &a[parent]);//交换//尾下一次循环做准备parent = child;child = parent * 2 + 1;}else//如果不用换就直接跳出循环{break;}}
}void HeapPop(Heap* php)//删除根
{assert(php);assert(php->size>0);Swap(&php->a[0], &php->a[php->size - 1]);//交换php->size--;//尾删//向下调整AdiustDown(php->a, php->size, 0);}
有了这个删根代码,我们在加上取根代码,和判空代码,便可实现数据的排序打印
HpDatatype HeapTop(Heap* php)//返回根值
{assert(php);assert(php->size > 0);return php->a[0];
}bool HeapEmpty(Heap* php)//判空
{assert(php);return php->size==0;
}
while (!HeapEmpty(&st)){printf("%d ", HeapTop(&st));//打印顶值HeapPop(&st);}

如果把上面插入数据和删除根向下调整的判断语句的小于改成大于那么就实现了打印出来的数据时从大到小的排序

这里就体现出了堆的魅力,当一组数据时以堆的形式储存的,那么他在排序的时候的时间复杂度就是
O(logN2),而之前我们学习的冒泡排序的时间复杂度是O(N2),显然堆的排序时间复杂度更低
但是这里平不是用堆来排序的实际用法,因为如果给我们一个数组,进行排序,我们是要实际改变数组里面值的位置,并不是像这里这样pop一次然后取根打印出来,即使我们每次用取出来的根值去覆盖原来的数组,那么我们要用这样的堆就需要写上面所以的建立堆的数据结构代码,显然是太麻烦了。
那么我们是否可以:

把给的数组变成堆的时候我们就要进行排序,因为这里并没有上面写的数据结构的堆,所以我们无法取根然后再打印,——之前也说了这种方法是不会把原本的数组改变成有有序的,
所以之下要讲的才是如何在把一个数组已经变成堆的情况下进行排序:
降序排序-——恰恰是把数组变成大堆,升序排序恰恰是把数组变成小堆
为什么要这样呢?

升序代码:
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>void Swap(int* child, int* parent)//交换
{int temp = *child;*child = *parent;*parent = temp;
}Adjust(int* a, int child)//向上调整形成堆
{int parent = (child - 1) / 2;while (child > 0){if (a[parent] < a[child]){Swap(&a[parent], &a[child]);child = parent;parent = (parent - 1) / 2;}else{break;}}
}AdiustDown(int* a, int n, int parent)//向下调整
{int child = parent * 2 + 1;while (child<n){if (child + 1 < n && a[child + 1] > a[child]){child++;}if (a[child] > a[parent]){Swap(&a[child],&a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
int main()
{
int arr[] = { 90,56,3,46,1,2,89 };
int n = sizeof(arr) / sizeof(int);
for (int i = 1; i < n; i++)
{Adjust(arr, i);//调整
}
int end = n - 1;//最后一个数的下标
while (end > 0)
{Swap(&arr[0], &arr[end]);//向下调整AdiustDown(arr, end, 0);end--;
}for (int j = 0; j < n; j++)
{printf("%d ", arr[j]);
}return 0;
}

相关文章:
二叉树的顺序存储——堆——初识堆排序
前面我们学过可以把完全二叉树存入到顺序表中,然后利用完全二叉树的情缘关系,就可以通过数组下标来联系。 但是并不是把二叉树存入到数组中就是堆了,要看原原来的二叉树是否满足:所有的父都小于等于子,或者所有的父都…...
CYEZ 模拟赛 9
A a ⊥ b ⇒ a − b ⊥ a b (1) a \perp b \Rightarrow a-b \perp ab \tag {1} a⊥b⇒a−b⊥ab(1) 证明: gcd ( a , b ) gcd ( b , a − b ) \gcd(a,b) \gcd(b, a-b) gcd(a,b)gcd(b,a−b),故 a − b ⊥ b a - b \perp b a−b⊥b,同…...
typescript: Builder Pattern
/*** file: CarBuilderts.ts* TypeScript 实体类 Model* Builder Pattern* 生成器是一种创建型设计模式, 使你能够分步骤创建复杂对象。* https://stackoverflow.com/questions/12827266/get-and-set-in-typescript* https://github.com/Microsoft/TypeScript/wiki/…...
WPS/word 表格跨行如何续表、和表的名称
1:具体操作: 将光标定位在跨页部分的第一行任意位置,按下快捷键ctrlshiftenter,就可以在跨页的表格上方插入空行(在空行可以写,表1-3 xxxx(续)) 在空行中输入…...
Python的NumPy库(一)基础用法
NumPy库并不是Python的标准库,但其在机器学习、大数据等很多领域有非常广泛的应用,NumPy本身就有比较多的内容,全部的学习可能涉及许多的内容,但我们在这里仅学习常见的使用,这些内容对于我们日常使用NumPy是足够的。 …...
uniapp app 导出excel 表格
直接复制运行 <template><view><button click"tableToExcel">导出一个表来看</button><view>{{ successTip }}</view></view> </template><script>export default {data() {return {successTip: }},metho…...
【RabbitMQ】常用消息模型详解
文章目录 AMQP协议的回顾RabbitMQ支持的消息模型第一种模型(直连)开发生产者开发消费者生产者、消费者开发优化API参数细节 第二种模型(work quene)开发生产者开发消费者消息自动确认机制 第三种模型(fanout)开发生产者开发消费者 第四种模型(Routing)开发生产者开发消费者 第五…...
图像拼接后丢失数据,转tiff报错rasterfile failed: an unknown
图像拼接后丢失数据 不仅是数据丢失了,还有个未知原因报错 部分数据存在值不存在的情况 原因 处理遥感数据很容易,磁盘爆满了 解决方案 清理一些无用数据,准备买个2T的外接硬盘用着了。 然后重新做处理...
Nginx之日志模块解读
目录 基本介绍 配置指令 access_log(访问日志) error_log( 错误日志) 基本介绍 Nginx日志主要分为两种:access_log(访问日志)和error_log(错误日志)。Nginx日志主要记录以下信息: 记录Nginx服务启动…...
latex方程组编写,一种可以保证方程编号自适应的方法
问题描述: 在利用latex编写方程组时,可以有很多种方法,但不总是编辑好的公式能够显示出编号,故提出一种有效的方程组编写方法 方法: \begin{equation}X_{ t1}\left \{ \begin{matrix}\frac{x_{i}}{a} \quad\quad 0&l…...
深度学习基础 2D卷积(1)
什么是2D卷积 2D参数量怎么计算 以pytorch为例子,2D卷积在设置的时候具有以下参数,具有输入通道的多少(这个决定了卷积核的通道数量),滤波器数量,这个是有多少个滤波器,越多提取的特征就越有用…...
OpenCV DNN C++ 使用 YOLO 模型推理
OpenCV DNN C 使用 YOLO 模型推理 引言 YOLO(You Only Look Once)是一种流行的目标检测算法,因其速度快和准确度高而被广泛应用。OpenCV 的 DNN(Deep Neural Networks)模块为我们提供了一个简单易用的 API࿰…...
第八章 Linux文件系统权限
目录 8.1 文件的一般权限 1.修改文件或目录的权限---chmod命令 2.对于文件和目录,r,w,x有不同的作用: 3.修改文件或目录的所属主和组---chown,chgrp 8.2 文件和目录的特殊权限 三种通过字符描述文件权限 8.3 ACL 权限 1.A…...
XXL-JOB源码梳理——一文理清XXL-JOB实现方案
分布式定时任务调度系统 流程分析 一个分布式定时任务,需要具备有以下几点功能: 核心功能:定时调度、任务管理、可观测日志高可用:集群、分片、失败处理高性能:分布式锁扩展功能:可视化运维、多语言、任…...
java做个qq机器人
前置的条件 机器人是基于mirai框架实现的。根据官方的文档,建议使用openjdk11。 我这里使用的编辑工具是idea2023 在idea中新建一个maven项目,虽然可以使用gradle进行构建,不过我这里由于网络问题没有跑通。 pom.xml <dependency>&l…...
前端 | AjaxAxios模块
文章目录 1. Ajax1.1 Ajax介绍1.2 Ajax作用1.3 同步异步1.4 原生Ajax 2. Axios2.1 Axios下载2.2 Axios基本使用2.3 Axios方法 1. Ajax 1.1 Ajax介绍 Ajax: 全称(Asynchronous JavaScript And XML),异步的JavaScript和XML。 1.2 Ajax作用 …...
高效的ProtoBuf
一、背景 Google ProtoBuf介绍 这篇文章我们讲了怎么使用ProtoBuf进行序列化,但ProtoBuf怎么做到最高效的,它的数据又是如何压缩的,下面先看一个例子,然后再讲ProtoBuf压缩机制。 二、案例 网上有各种序列化方式性能对比&#…...
删除SQL记录
删除记录的方式汇总: 根据条件删除:DELETE FROM tb_name [WHERE options] [ [ ORDER BY fields ] LIMIT n ] 全部删除(表清空,包含自增计数器重置):TRUNCATE tb_namedelete和truncate的区别: d…...
数据结构--》探索数据结构中的字符串结构与算法
本文将带你深入了解串的基本概念、表示方法以及串操作的常见算法。通过深入理解串的相关概念和操作,我们将能够更好地应用它们来解决算法问题。 无论你是初学者还是进阶者,本文将为你提供简单易懂、实用可行的知识点,帮助你更好地掌握串在数据…...
云安全之等级保护详解
等级保护概念 网络安全等级保护,是对信息系统分等级实行安全保护,对信息系统中使用的安全产品实行按等级管理,对信息系统中发生的信息安全事件分等级进行响应、处置。 网络安全等级保护的核心内容是:国家制定统一的政策、标准&a…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
