Python逐日填补Excel中的日期并用0值填充缺失日期的数据
本文介绍基于Python语言,读取一个不同的列表示不同的日期的.csv
格式文件,将其中缺失的日期数值加以填补;并用0
值对这些缺失日期对应的数据加以填充的方法。
首先,我们明确一下本文的需求。现在有一个.csv
格式文件,其第一列表示日期,用2021001
这样的格式记录每一天的日期;其后面几列则是这一日期对应的数据。如下图所示。
从上图可以看到,第一列(紫色框内)的日期有很多缺失值,例如一下子就从第001
天跳到了005
天,然后又直接到了042
天。我们希望,基于这一文件,首先逐日填补缺失的日期;其次,对于这些缺失日期的数据(后面四列),就都用0
值来填充即可。最后,我们希望用一个新的.csv
格式文件来存储我们上述修改好的数据。
知道了需求,我们就可以开始代码的撰写;具体代码如下。
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 5 14:58:19 2023@author: fkxxgis
"""import pandas as pdinput_file = "E:/04_Reconstruction/03_Image/Data.csv"
output_file = "E:/04_Reconstruction/03_Image/Data_AllYear.csv"df = pd.read_csv(input_file)
df['time'] = pd.to_datetime(df['time'], format='%Y%j')df.set_index('time', inplace=True)start_date = pd.to_datetime('2021001', format='%Y%j')
end_date = pd.to_datetime('2021365', format='%Y%j')
date_range = pd.date_range(start=start_date, end=end_date, freq='D')df_filled = df.reindex(date_range, fill_value=0)df_filled.reset_index(inplace=True)
df_filled['time'] = df_filled['index'].dt.strftime('%Y%j')df_filled.drop(df_filled.columns[0], axis=1, inplace=True)cols = list(df_filled.columns)
cols = [cols[-1]] + cols[:-1]
df_filled = df_filled[cols]df_filled.to_csv(output_file, index=False)
其中,我们首先导入所需的库,并定义输入和输出文件的路径。随后,我们使用pd.read_csv
方法读取输入文件,并将数据存储于df
中。
接下来,我们使用pd.to_datetime
方法将df
中的时间列转换为日期时间格式,并使用set_index
方法将时间列设置为DataFrame的索引。
随后,计算需要填补的日期范围——我们将字符串'2021001'
转换为日期时间格式并作为结束日期,将字符串'2021365'
转换为日期时间格式并作为结束日期,使用pd.date_range
方法生成完整的日期范围,频率为每天。
接下来,使用reindex
方法对DataFrame进行重新索引,以包含完整的日期范围,并使用0
填充缺失值。其次,使用reset_index
方法将索引列还原为普通列,并使用dt.strftime
方法将时间列转换回字符串格式。
最后,我们使用drop
方法删除第一列(否则最终输出的结果文件的第一列是前面的索引值,而不是time
列),并将最后一列(也就是time
列)移到第一列。随后,即可将修改后的DataFrame保存到输出文件中,使用to_csv
方法,并设置index=False
以避免保存索引列。
运行上述代码,即可得到如下图所示的结果文件。
可以看到,此时文件中已经是逐日的数据了,且对于那些新增日期的数据,都是0
来填充的。
至此,大功告成。
欢迎关注:疯狂学习GIS
相关文章:

Python逐日填补Excel中的日期并用0值填充缺失日期的数据
本文介绍基于Python语言,读取一个不同的列表示不同的日期的.csv格式文件,将其中缺失的日期数值加以填补;并用0值对这些缺失日期对应的数据加以填充的方法。 首先,我们明确一下本文的需求。现在有一个.csv格式文件,其第…...

【C语言经典100例题-70】求一个字符串的长度(指针)
代码 使用指针来遍历字符串,直到遇到字符串结尾的空字符\0为止,统计字符数量即为字符串长度。 #include<stdio.h> #define n 20 int getlength(char *a) {int len 0;while(*a!\0){len;a;}return len; } int main() {char *arr[n] { 0 };int l…...

十天学完基础数据结构-第八天(哈希表(Hash Table))
哈希表的基本概念 哈希表是一种数据结构,用于存储键值对。它的核心思想是将键通过哈希函数转化为索引,然后将值存储在该索引位置的数据结构中。 哈希函数的作用 哈希函数是哈希表的关键部分。它将输入(键)映射到哈希表的索引位…...
flink集群部署
虚拟机配置 bigdata-hmaster 192.168.135.112 4核心 32GB bigdata-hnode1 192.168.135.113 4核心 16GB bigdata-hnode2 192.168.135.114 4核心 16GB 安装包:https://dlcdn.apache.org/flink/flink-1.17.1/flink-1.17.1-bin-scala_2.12.tgz 放到/usr/lcoal/lib目录…...
2.证明 非单一点 Oct.2023
目录 原题解引申出的编程问题非单一点题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示 题解题目正解 原题 已知等边 Δ P 0 P 1 P 2 \Delta P_0P_1P_2 ΔP0P1P2,它的外接圆是 O O O,设 O O O的半径是 R R R。同时,设 Δ …...

常见的软件脱壳思路
单步跟踪法 1.本方法采用OD载入。 2.跟踪F8,实现向下的跳。 3.遇到程序回跳按F4。 4.绿色线条表示跳转没实现,不用理会,红色线条表示跳转已经实现! 5.刚载入程序有一个CALL的,我们就F7跟进去,不然程序很容…...
Python:torch.nn.Conv1d(), torch.nn.Conv2d()和torch.nn.Conv3d()函数理解
Python:torch.nn.Conv1d(), torch.nn.Conv2d()和torch.nn.Conv3d()函数理解 1. 函数参数 在torch中的卷积操作有三个,torch.nn.Conv1d(),torch.nn.Conv2d()还有torch.nn.Conv3d(),这是搭建网络过程中常用的网络层,为了用好卷积层࿰…...
scala 连接 MySQL 数据库案例
1 依赖准备 mysql 8添加: <dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.29</version></dependency> mysql 5 添加: <dependency><grou…...
guava工具类常用方法
Guava是Google开发的一个Java开源工具类库,它提供了许多实用的工具类和功能,可以简化Java编程中的常见任务。 引入依赖 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>2…...
CSShas伪类选择器案例附注释
<!DOCTYPE html> <html lang="en"> <head><meta charset...

nodejs+vue中医体质的社区居民健康管理系统elementui
可以实现首页、中医体质量表、健康文章、健康视频、我的等,在我的页面可以对医生、小区单元、医疗药品等功能进行操作。目前主要的健康管理系统是以西医为主,而为了传扬中医文化,提高全民健康意识,解决人民日益增长的美好生活需要…...
Kotlin中reified 关键字
前言 在开始之前,让我们先讨论一下泛型。泛型用于为类、函数或接口提供通用的实现。下面是一个示例泛型方法: fun <T> displayValue(value: T) {println(value) }fun main() {displayValue<String>("Generics")displayValue<…...
Linux命令(95)之alias
linux命令之alias 1.alias介绍 linux命令alias是用来将/bin目录下的命令进行别名设置,将一些较长的命令进行简化。 alias命令的作用只局限于该次登入的操作,相当于临时变量。 如果对当前用户永久生效,需修改~/.bashrc文件,使用…...

DHCPsnooping 配置实验(2)
DHCP报文泛洪攻击 限制接收到报文的速率 vlan 视图或者接口视图 dhcp request/ dhcp-rate dhcp snooping check dhcp-request enable dhcp snooping alarm dhcp-request enable dhcp snooping alarm dhcp-request threshold 1 超过则丢弃报文 查看[Huawei]dis dhcp statistic…...

Qt 综合练习小项目--反金币(2/2)
目录 4 选择关卡场景 4.2 背景设置 4.3 创建返回按钮 4.3 返回按钮 4.4 创建选择关卡按钮 4.5 创建翻金币场景 5 翻金币场景 5.1 场景基本设置 5.2 背景设置 5.3 返回按钮 5.4 显示当前关卡 5.5 创建金币背景图片 5.6 创建金币类 5.6.1 创建金币类 MyCoin 5.6.…...

安装matplotlib__pygame,以pycharm调入模块
安装pip 安装matplotlib 安装完毕,终端输入pip list检查 导入模块出现bug,发现不是matplotlib包的问题,pycharm版本貌似不兼容,用python编辑器可正常绘图,pygame也可正常导入。 pycharm版本问题解决 终…...
编写可扩展的软件:架构和设计原则
在今天的软件开发领域,可扩展性是一个至关重要的概念。无论您是开发一个小型应用程序还是一个大规模的软件系统,都需要考虑如何使您的软件能够在不断变化的需求下进行扩展和演进。本文将探讨编写可扩展软件的关键架构和设计原则,以帮助开发人…...

算法-排序算法
0、算法概述 0.1 算法分类 十种常见排序算法可以分为两大类: 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。 非比较类排序:不通过比较来决定元素间…...
Android_Monkey_测试执行策略及标准
一、Monkey命令概述 NO命令说明用法解释1 -p ALLOWED_PACKAGE用于指定某个apk,可以使用多个-p选项,但是每个-p命令选项只能用于一个apk 如果不指定-p,Monkey就会默认进行全系统测试。 -p com.android.contacts可以进行特定apk的Monkey测试2 …...

windows安装nginx
官网提供的下载地址:nginx: download nginx1.25.2下载地址:http://nginx.org/download/nginx-1.25.2.zip 直接运行nginx.exe会闪退,我们还得使用cmd/git bash/power shell 命令进行启动; 个人更喜欢git bash; 运行命…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...