数据分析篇-数据认知分析
一简介
数据认知分析,实际是对数据的整体结构和分布特征进行分析,是对整个数据外在的认识,也是数据分析的第一步。对于数据认知的分析,一般会考虑分散性、位置特性、变量的相关性等,一般会考虑平均数、方差、极差、峰度和偏度等基础统计量。数据认知的过程实际是快速从数据中抽取信息的过程。
二 常见认知分析
2.1 数据的波动
单个变量数据的波动一般通过方差和标准差来衡量,方差即序列中各个变量与算数平均数作差的平方和的均值,标准差是方差的正二次方根值,通常方差或者标准差越大,说明当前的数据序列波动大。
如果是多个数据序列的波动情况,可以使用协方差进行衡量,衡量的方式为两个变量的均值的差做乘积,然后进行求和,再除以序列的个数。协方差的计算公式参考为:COV(X,Y)=E(XY)-E(X)E(Y)
方差计算公式:
标准差计算公式:
2.2数据的相关性
- 相关性分析可以快速理解不同变量之间的变动方向和统一程度
- 数据的相关性可以通过散点图简单了解,也可以通过相关系数来表示,也可以通过判定系数来衡量
1.散点图
确认坐标系后,进行绘制,参考下图
2.相关系数
相关系数有三种计算逻辑:Pearson相关系数和Spearman秩相关系数和判定系数
Pearson相关系数计算逻辑如下
其中相关系数r,如果趋近于0,则表示两个变量不相关,如果r的绝对值趋近于1,则表示两个变量呈现一定的相关性,若r<0,则表示有一定的负相关性,若r>0,则表示有一定的正相关性
Spearman秩相关系数,是反映等级相关程度的统计分析指标,一般需要将数据进行排序,然后再计算相关系数,其主要步骤参考下图
判定系数:判定系数是相关系数的平方,一般用于衡量回归方程对y的解释程度。如果判定系数接近1,则说明x与y的相关性越强,如果判定系数越接近0,则说明两个变量之间没有线性关系。
2.3. 数据分布
数据分布主要考虑的统计变量的序列分布情况,主要的统计变量梳理如下
2.4.数据对比
- 业务数据的共同特征和差异化,可以通过数据对比体现出来。
- 通过数据对比,可以帮助我们分辨出业务的变化、发展趋势,以及基于通用事务的个性特征,从而帮助我们深刻认识业务的本质和规律。
- 对比分析一般是将两个相互联系的指标进行比较,从数量上进行展示和说明,当前业务研究对象的发展趋势、发展水平或者各种关系是否协调,适合于时间序列的比较分析和指标建的纵横比较分析。
- 对比分析包含绝对数比较和相对数比较,绝对数比较是指使用绝对数进行对比,寻找差异的一种方法,相对数是将两个有关联的质保进行对比,反映客观现象质检数量联系程度的综合指标。相对数比较有如下几种
2.5 周期对比
周期性分析,一般用于探索某个变量随时间变化的趋势,用于较长周期趋势的预测和分析,比如年度周期趋势、月度趋势、季节性趋势、周度趋势、产品生命周期等。
2.6.贡献度分析
贡献度分析也是帕累托分析,也称二八定律,也称为ABC分析法,即同样的投入放入到不同的地方会产生不同的效益,通常一个公司80%的收益来源于20%的畅销产品,而其他80%的产品只带来了20%的收入。
贡献度分析,可以让我们迅速了解当前企业的主要业务和产品定位,了解企业现状。
相关文章:

数据分析篇-数据认知分析
一简介 数据认知分析,实际是对数据的整体结构和分布特征进行分析,是对整个数据外在的认识,也是数据分析的第一步。对于数据认知的分析,一般会考虑分散性、位置特性、变量的相关性等,一般会考虑平均数、方差、极差、峰…...

【力扣-每日一题】714. 买卖股票的最佳时机含手续费
class Solution { public:int maxProfit(vector<int>& prices, int fee) {//[i][0]-不持有 [i][1]-持有int mprices.size();vector<vector<int>> dp(m,vector<int>(2));dp[0][0]0; //初始状态dp[0][1]-prices[0];for(int i1;i<m;i){dp[i]…...

【代码实践】HAT代码Window平台下运行实践记录
HAT是CVPR2023上的自然图像超分辨率重建论文《activating More Pixels in Image Super-Resolution Transformer》所提出的模型。本文旨在记录在Window系统下运行该官方代码(https://github.com/XPixelGroup/HAT)的过程,中间会遇到一些问题&am…...
机器学习-Pytorch基础
Numpy和Pytorch可以相互转换,前者CPU上,后者GPU上,都是对矩阵进行运算,Pytorch的基本单位是张量。torch 可以初始化全为0、全为1、符合正态分布的矩阵确定性初始化 torch.tensor()torch.arrange()torch.linspace()torch.logspace…...

金九银十,刷完这个笔记,17K不能再少了....
大家好,最近有不少小伙伴在后台留言,得准备面试了,又不知道从何下手!为了帮大家节约时间,特意准备了一份面试相关的资料,内容非常的全面,真的可以好好补一补,希望大家在都能拿到理想…...

精确到区县级街道乡镇行政边界geojson格式矢量数据的获取拼接实现Echarts数据可视化大屏地理坐标信息地图的解决方案
在Echarts制作地理信息坐标地图时,最麻烦的就是街道乡镇级别的行政geojson的获取, 文件大小 788M 文件格式 .json格式,由于是大文件数据,无法直接使用记事本或者IDE编辑器打开,推荐Dadroit Viewer(国外…...
【Python 千题 —— 基础篇】多行输出
题目描述 下面是一道关于输入输出的基础题。⭐⭐⭐ 题目描述 编写一个Python程序,将字符串 Hello World! 存储在变量 str1 中,将字符串 Hello Python! 存储在变量 str2 中,然后使用 print 语句分别将它们在不同行打印出来。 输入描述 无…...

AdaBoost(上):数据分析 | 数据挖掘 | 十大算法之一
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…...
Py之pygraphviz:pygraphviz的简介、安装、使用方法之详细攻略
Py之pygraphviz:pygraphviz的简介、安装、使用方法之详细攻略 目录 pygraphviz的简介 pygraphviz的安装 Graphviz:可视化工具Graphviz的简介、安装、使用方法、经典案例之详细攻略 pygraphviz的使用方法 1、基础用法 2、进阶案例 Algorithm&#…...
acwing算法基础之基础算法--前缀和算法
目录 1 知识点2 模板 1 知识点 前缀后下标尽量从1开始,当然不从1开始也是ok的。 a 1 , a 2 , a 3 , . . . , a n a_1,a_2,a_3,...,a_n a1,a2,a3,...,an S 1 , S 2 , S 3 , . . . S n S_1,S_2,S_3,...S_n S1,S2,S3,...Sn S i S_i Si࿱…...

华为云云耀云服务器L实例评测|Ubuntu 22.04部署edusoho-ct企培版教程 | 支持华为云视频点播对接CDN加速
华为云云耀云服务器L实例评测|Ubuntu 22.04部署edusoho企培版教程 1、选择购买 华为云耀云服务器L实例 简单上云第一步 2、选择你要安装的操作系统,例如 Ubuntu 22.04 server 64bit 3、然后支付订单就行了 4、华为云云耀云服务器L实例创建好之后&#x…...

土木硕设计院在职转码上岸
一、个人介绍 双非土木硕,98年,目前在北京,职位为前端开发工程师,设计院在职期间自学转码上岸🌿 二、背景 本人于19年开始土木研究生生涯,研二期间去地产实习近半年(碧桂园和世茂,这两家的地产…...
js查询月份开始和结束日期
js查询月份开始和结束日期 月份开始和结束 月份开始和结束 整体不是很复杂,使用new Date()方法自带获取最后一天的时间 new Date(a,b,c),传递参数 参数a:是要获取的年份 参数b:是要获取的月份 参数c:是要获取的日期 传递日期为…...
mybatis开发部分核心代码
pom.xml<?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 ht…...
Springboot中查看gradle工程使用了哪些仓库
在springboot项目开发中,由于初始化配置文件(init.gradle)可能存在多个目录中(不只一份),可能导致多次重复引入仓库。也有可能配置文件放置位置错误,导致gradle编译时找不到相应的仓库。如果能在编译时查看gradle到底引用了哪些库,…...

c#中的接口
使用IEnumerable统一迭代变量类型 class Program {static void Main(string[] args){int[] nums1 new int[] { 1, 2, 3, 4, 5 };ArrayList nums2 new ArrayList { 1, 2, 3, 4, 5 };Console.WriteLine(Sum(nums1));Console.WriteLine(Sum(nums2));Console.WriteLine(Avg(nums…...
老卫带你学---leetcode刷题(76. 最小覆盖子串)
76. 最小覆盖子串 问题: 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 “” 。 注意: 对于 t 中重复字符,我们寻找的子字符串中该字符数量必…...
Maven-DskipTests和-Dmaven.test.skip=true的区别
DskipTeststrue和-Dmaven.test.skiptrue的区别 1、 -DskipTeststrue 不执行测试用例,但编译测试用例类生成相应的class文件至target/test-classes下,如: mvn clean package -DskipTeststrue2、 -Dmaven.test.skiptrue 完全忽略测试代码的…...
conda中cuda、cuda-toolkit、cuda-nvcc、cuda-runtime的区别
conda中cuda、cuda-toolkit、cuda-nvcc、cuda-runtime的区别 cuda cuda-toolkit cuda-runtime cuda-toolkit 包含 cuda-nvcc CUDA cuda nvidia/label/cuda-11.8.0/linux-64::cuda-11.8.0-0 cuda-cccl nvidia/label/cuda-11.8.0/linux-64::cuda-cccl-11.8.89-0 cuda-comma…...

增强现实抬头显示AR-HUD
增强现实抬头显示(AR-HUD)可以将当前车身状态、障碍物提醒等信息3D投影在前挡风玻璃上,并通过自研的AR-Creator算法,融合实际道路场景进行导航,使驾驶员无需低头即可了解车辆实时行驶状况。结合DMS系统,可以…...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...

七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...