当前位置: 首页 > news >正文

yolov5及yolov7实战之剪枝

之前有讲过一次yolov5的剪枝:yolov5实战之模型剪枝_yolov5模型剪枝-CSDN博客
当时基于的是比较老的yolov5版本,剪枝对整个训练代码的改动也比较多。最近发现一个比较好用的剪枝库,可以在不怎么改动原有训练代码的情况下,实现剪枝的操作,这篇文章就简单介绍一下,剪枝的概念以及为什么要剪枝可以参看上一篇,这里就不赘述了。

Torch-Pruning

VainF/Torch-Pruning: [CVPR 2023] Towards Any Structural Pruning; LLMs / Diffusion / Transformers / YOLOv8 / CNNs (github.com)
今天我们要用到的就是这个剪枝库,这个库集成了很多剪枝的方法,毕竟使用比较简单。

用法

这个剪枝库既有low level的剪枝,也就是手动控制剪枝哪些层,也有high level的剪枝,就是使用预设的剪枝算法,自动选择剪枝的部分。对于我们来说,更适合使用high level剪枝。具体的这里使用和上一篇yolov5里面的剪枝一样的算法,在这个库里叫BNScalePruner。

安装

首先我们需要安装上面提到的库,有两种方式来安装:

pip install torch-pruning

或源码安装(当碰到bug发布版本没修复,源码修复的时候):

pip install git+https://github.com/VainF/Torch-Pruning.git

稀疏化训练

为了更好的剪枝,我们在训练剪枝前的网络时,推荐开启稀疏化训练,利用这个库,我们可以很方便的实现这个操作。
首先在我们的训练代码中定义好剪枝器, 这里的opt.prune是我自己加的来控制是否开启稀疏化训练的标志:

# prune
if opt.prune:examle_input = torch.randn(1, 3, imgsz, imgsz).to(device)imp = tp.importance.BNScaleImportance()pruner = tp.pruner.BNScalePruner(model, examle_input, imp,reg=0.0001)

稀疏化训练主要需要设置reg参数,一般设置0.001~1e-6之间。
定义好剪枝器后,在训练代码的scaler.scale(loss).backward()之后,添加如下代码:

if opt.prune:pruner.regularize(model)

即可实现稀疏化训练。

剪枝

稀疏化训练后(也可以不做稀疏化训练),我们就可以进行剪枝操作了。这个库可以在训练中交互式进行多次剪枝,简单起见,我们这里分离剪枝和训练的代码,只进行剪枝操作。

import torch_pruning as tp
from models.experimental import attempt_load
import torchweights = "yolov7.pt"
model = attempt_load(weights, map_location=torch.device('cuda:0'), fuse=False)
for p in model.parameters():p.requires_grad = True
ignored_layers = []
from models.yolo import Detect, IDetect
from models.common import ImplicitA, ImplicitM
for m in model.modules():if isinstance(m, (Detect,IDetect)):ignored_layers.append(m.m)
unwrapped_parameters = []
for name, m in model.named_parameters():if isinstance(m, (ImplicitA,ImplicitM,)):unwrapped_parameters.append((name,1)) # pruning 1st dimension of implicit matrixprint(ignored_layers)
example_inputs = torch.rand(1, 3, 416, 416, device='cuda:0')
imp = tp.importance.BNScaleImportance()
pruner = tp.pruner.BNScalePruner(model, example_inputs, imp,ignored_layers=ignored_layers,unwrapped_parameters=unwrapped_parameters,global_pruning=True,ch_sparsity=0.3,round_to=8,)base_macs, base_nparams = tp.utils.count_ops_and_params(model, example_inputs)
pruner.step()
pruned_model = pruner.model
pruned_macs, pruned_nparams = tp.utils.count_ops_and_params(pruned_model, example_inputs)
print(f"macs: {base_macs} -> {pruned_macs}")
print(f"nparams: {base_nparams} -> {pruned_nparams}")
macs_cutoff_ratio = (base_macs - pruned_macs) / base_macs
nparams_cutoff_ratio = (base_nparams - pruned_nparams) / base_nparams
print(f"macs cutoff ratio: {macs_cutoff_ratio}")
print(f"nparams cutoff ratio: {nparams_cutoff_ratio}")
save_path = weights.replace(".pt", "_pruned_bn_0.3.pt")torch.save({"model": pruned_model.module if hasattr(pruned_model, 'module') else pruned_model}, save_path)

去掉一些计算剪枝比例的,保存代码等代码外,剪枝操作其实由pruner.step()这一步完成。这里我们主要需要设置的参数是:

  • ch_sparsity: 可以理解成剪枝的比例,越大剪得越多
  • global_pruning: True表示整个模型的权重按一个整体排序后剪枝,False表示按分组内部按比例剪枝
  • round_to: 剪枝后的通道保留为多少的倍数,一般在硬件上,保留8的倍数

微调

经过剪枝的网络,精度是下降比较明显的,需要再在数据上finetune一些epoch才能把精度拉回来。
yolov7默认是通过yaml文件创建模型结构,然后再载入权重进行训练的,而我们剪枝后的模型是没有模型结构文件的,因此需要对训练代码做一定的修改,具体而言,只是对模型的载入进行一点修改。其中opt.finetune是用来控制是否处于finetune模式的标志位。

if opt.finetune: # for model without cfgnew = torch.load(weights, map_location=device)  # createmodel = new["model"]print("Finetune Mode...")
elif pretrained:
...

比较简单的改法是这样,从checkpoint中载入结构和权重,还有一种方式则是修改yolov7的Model类,这个在后面讲yolov7剪枝后蒸馏的时候再讲,暂时用上面这种方式就可以了。

评测

我在自己的任务上的效果是yolov7剪枝50%,微调后基本上能达到剪枝前的map,没记错的话这是和稀疏化训练的比,毕竟开启稀疏化训练本身也会掉点。大家可以在自己的任务上尝试一下,总体上精度还是可以的

结语

这篇文章简述了以下yolov7的剪枝,yolov5也可用,希望对大家有帮助。
f77d79a3b79d6d9849231e64c8e1cdfa~tplv-dy-resize-origshort-autoq-75_330.jpeg

相关文章:

yolov5及yolov7实战之剪枝

之前有讲过一次yolov5的剪枝:yolov5实战之模型剪枝_yolov5模型剪枝-CSDN博客 当时基于的是比较老的yolov5版本,剪枝对整个训练代码的改动也比较多。最近发现一个比较好用的剪枝库,可以在不怎么改动原有训练代码的情况下,实现剪枝的…...

力扣第257题 二叉树的所有路径 c++ 树 深度优先搜索 字符串 回溯 二叉树

题目 257. 二叉树的所有路径 简单 给你一个二叉树的根节点 root ,按 任意顺序 ,返回所有从根节点到叶子节点的路径。 叶子节点 是指没有子节点的节点。 示例 1: 输入:root [1,2,3,null,5] 输出:["1->2-&g…...

保研之旅·终

一.背景 学校: 中211 通信工程专业 成绩: 绩点前3% 英语: CET4:523 CET6:505 竞赛:两个国奖,若干省奖 科研:两项校级大创,无论文产出 二.基本情况 夏令营入营: 哈工大…...

达梦数据库 视图 错误 [22003]: 数据溢出

今天通过DBeaver连接访问达梦数据库的一个视图,报错:错误 [22003]: 数据溢出 经过分析,原因是视图字段的数据类型和原表的数据类型不一致造成的...

【文献阅读】【NMI 2022】LocalTransform :基于广义模板的有机反应性准确预测图神经网络

预测有机反应产物是有机化学的一个基本问题。基于成熟有机化学知识,化学家现在能够设计实验来制造用于不同目的的新分子。但是,它需要经验丰富的专业化学家来准确预测化学反应的结果。为了进一步帮助有机化学家并在数字化学时代实现全自动发现&#xff0…...

QQ浏览器怎么才能设置默认搜索引擎为百度

问题: 打开QQ浏览器,搜索相关信息时发现总是默认为”搜狗搜索引擎“,想将其转为”百度搜索引擎“ 解决: 1、点击浏览器右侧”菜单“图标,选择”设置“,如下图所示: 2、在”常规设置“中的”搜…...

Go Gin Gorm Casbin权限管理实现 - 3. 实现Gin鉴权中间件

文章目录 0. 背景1. 准备工作2. gin中间件2.1 中间件代码2.2 中间件使用2.3 测试中间件使用结果 3. 添加权限管理API3.1 获取所有用户3.2 获取所有角色组3.3 获取所有角色组的策略3.4 修改角色组策略3.5 删除角色组策略3.6 添加用户到组3.7 从组中删除用户3.8 测试API 4. 最终目…...

js 封装一个异步任务函数

// 异步任务 封装 // 1,定义函数 // 2,使用核心api(queueMicrotask,MutationObserver,setTimeout) function runAsynctask (callback){if(typeof queueMicrotask "function" ){queueMicrotask(callback)}else if( typeof MutationObserver "functio…...

目标检测YOLO实战应用案例100讲-基于无人机航拍图像的目标检测

目录 前言 国内外研究现状 目标检测研究现状 无人机航拍目标检测研究现状...

PyQt5配置踩坑

安装步骤比较简单,这里只说一下我踩的坑,以及希望一些大佬可以给点建议。 一、QtDesigner 这个配置比较简单,直接就能用,我的配置如下图: C:\Users\lenovo\AppData\Roaming\Python\Python311\site-packages\qt5_app…...

内网渗透笔记之内网基础知识

0x01 内网概述 内网也指局域网(Local Area Network,LAN)是指在某一区域内由多台计算机互联成的计算机组。一般是方圆几千米以内。局域网可以实现文件管理、应用软件共享、打印机共享、工作组内的历程安排、电子邮件和传真通信服务等功能。 内…...

vue3+elementPlus:el-select选择器里添加按钮button

vue3elementPlus&#xff1a;el-select选择器里添加按钮button&#xff0c;在el-select的option后面添加button //html <el-select class"selectIcon" value-key"id" v-model"store.state.HeaderfilterText" multiple collapse-tagscollapse-…...

Android 模拟点击

Android 模拟点击 1.通过代码的方式实现 通过模拟MotionEvent的方式实现 //----------------模拟点击--------------------- private void simulateClick(View view, float x, float y) {long downTime SystemClock.uptimeMillis();final MotionEvent downEvent MotionEve…...

css自学框架之选项卡

这一节我们学习切换选项卡&#xff0c;两种切换方式&#xff0c;一种是单击切换选项&#xff0c;一种是鼠标滑动切换&#xff0c;通过参数来控制&#xff0c;切换方法。 一、参数 属性默认值描述tabBar.myth-tab-header span鼠标触发区域tabCon.myth-tab-content主体区域cla…...

Element Plus组件库中的input组件如何点击查看按钮时不可编辑,点击编辑时可编辑使用setup

如果你正在使用 Vue 3 和 Composition API&#xff0c;你可以使用 setup 函数来实现 Element Plus 的 Input 组件在点击查看按钮时不可编辑&#xff0c;点击编辑按钮时可编辑的功能。 以下是一个使用 setup 的示例代码&#xff1a; <template><div><el-input …...

小米、华为、iPhone、OPPO、vivo如何在手机让几张图拼成一张?

现在很多手机自带的相册APP已经有这个拼图功能了。 华为手机的拼图 打开图库&#xff0c;选定需要拼图的几张图片后&#xff0c;点击底部的【创作】&#xff0c;然后选择【拼图】就可以将多张图片按照自己想要的位置&#xff0c;组合在一起。 OPPO手机的拼图 打开相册&#…...

物联网AI MicroPython传感器学习 之 WS2812 RGB点阵灯环

学物联网&#xff0c;来万物简单IoT物联网&#xff01;&#xff01; 一、产品简介 ws2812是一个集控制电路与发光电路于一体的智能外控LED光源。其外型与一个5050LED灯珠相同&#xff0c;每个元件即为一个像素点。像素点内部包含了智能数字接口数据锁存信号整形放大驱动电路&a…...

【GPU常见概念】GPU常见概念及分类简述

随着大模型和人工智能的爆火&#xff0c;大家对GPU的关注持续上升&#xff0c;本文简单简述下GPU经常用的概念。 GPU&#xff08;图形处理器&#xff09;&#xff0c;又称显示核心、视觉处理器、显示芯片&#xff0c;是一种专门在个人电脑、工作站、游戏机和一些移动设备&…...

JVM篇---第九篇

系列文章目录 文章目录 系列文章目录一、什么是指针碰撞&#xff1f;二、什么是空闲列表三、什么是TLAB&#xff1f; 一、什么是指针碰撞&#xff1f; 一般情况下&#xff0c;JVM的对象都放在堆内存中&#xff08;发生逃逸分析除外&#xff09;。当类加载检查通过后&#xff0…...

探索 GAN 和 VAE 之外的 NLP 扩散模型

介绍 扩散模型最近引起了极大的关注,特别是在自然语言处理(NLP)领域。基于通过数据扩散噪声的概念,这些模型在各种NLP任务中表现出了卓越的能力。在本文中,我们将深入研究扩散模型,了解其基本原理,并探讨实际应用、优势、计算注意事项、扩散模型在多模态数据处理中的相…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...