【华为OD机试模拟题】用 C++ 实现 - 非严格递增连续数字序列(2023.Q1)
相关文章:
【华为OD机试模拟题】用 C++ 实现 - 非严格递增连续数字序列(2023.Q1)
最近更新的博客 华为OD机试 - 入栈出栈(C++) | 附带编码思路 【2023】 华为OD机试 - 箱子之形摆放(C++) | 附带编码思路 【2023】 华为OD机试 - 简易内存池 2(C++) | 附带编码思路 【2023】 华为OD机试 - 第 N 个排列(C++) | 附带编码思路 【2023】 华为OD机试 - 考古…...
RN面试题
RN面试题1.React Native相对于原生的ios和Android有哪些优势?1.性能媲美原生APP 2.使用JavaScript编码,只要学习这一种语言 3.绝大部分代码安卓和IOS都能共用 4.组件式开发,代码重用性很高 5.跟编写网页一般,修改代码后即可自动刷…...
【数据存储】浮点型在内存中的存储
目录 一、存储现象 二、IEEE标准规范 1.存储 2.读取 三、举例验证 1.存储 2.读取 浮点型存储的标准是IEEE(电气电子工程师学会)754制定的。 一、存储现象 浮点数由于其有小数点的特殊性,有很多浮点数是不能精确存储的,如&#…...
Servlet笔记(8):异常处理
1、错误页面配置 web.xml <!-- servlet 定义 --> <servlet><servlet-name>ErrorHandler</servlet-name><servlet-class>ErrorHandler</servlet-class> </servlet> <!-- servlet 映射 --> <servlet-mapping><servle…...
stm32f407探索者开发板(二十一)——窗口看门狗
文章目录一、窗口看门狗概述1.1 看门狗框图1.2 窗口看门狗工作过程总结1.3 超时时间1.4 为什么需要窗口看门狗1.5 其他注意事项二、常用寄存器和库函数2.1 控制寄存器WWDG_ CR2.2 配置寄存器WWDG_ CFR2.3 状态寄存器WWDG_SR三、手写窗口看门狗3.1 配置过程3.2 初始化窗口看门狗…...
C++ 模板
1. 泛型编程实现一个通用的交换函数,使用函数重载虽然可以实现,但是有以 下几个不好的地方:1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数2. 代码的可维…...
C++中的友元及运算符重载
友元 意义 程序中,有些私有属性也想让类外特殊的一些函数或者类进行访问,就要用到友元技术 关键字 friend 友元的三种实现 全局函数做友元 class Room{friend void test(Person &p);//friend class test;public:string phone_number;private:string…...
五、运行时数据区内部结构、JVM中的线程
内存是非常重要的系统资源,是硬盘和cpu的中间仓库及桥梁,承载着操作系统和应用程序的实时运行。JVM内存布局规定了Java在运行过程种内存申请、分配‘、管理的策略,保证了JVM的高效稳定运行,不同的JVM对于内存的划分方式和管理机制…...
Codeforces Round #848 (Div. 2)A-C
传送门 目录 A. Flip Flop Sum 代码: B. The Forbidden Permutation 代码: C. Flexible String 代码: A. Flip Flop Sum 题意:给你一个长度为n的数组(数组元素只为1或者-1),你要且只能进行…...
机器学习笔记之近似推断(一)从深度学习角度认识推断
机器学习笔记之近似推断——从深度学习角度认识推断引言推断——基本介绍精确推断难的原因虽然能够表示,但计算代价太大无法直接表示引言 本节是一篇关于推断总结的博客,侧重点在于深度学习模型中的推断任务。 推断——基本介绍 推断(Inference\text{…...
指针的进阶
一、字符指针 int main() {char ch w;char* pc &ch;//pc就是字符指针//const char *p "abcdef";//这里其实是把字符串"abcdef"的首地址放入了指针p中//*p w;//这是错误的无法修改值(可以看到这里绿色波浪线警告)char arr[] …...
一元二次方程方程的类
1 问题设计一个一元二次方程的类,其中包括能够反映一元二次方程的属性与操作行为,然后再设计一个测试类,检测类的使用情况。2 方法使用package语句将方程的属性即计算跟的方法封装在一个有包名的类中,包名为tom.jiafei,…...
Ask林曦|来回答,30个你关心的日常问题(二)
在林曦老师的线上书法直播课上,上课前后的聊天时间里,时常有同学向林曦老师提问,这些问题涵盖了日常生活的诸多方面,从身体的保养,到快乐的法门,皆是大家感兴趣的,也都共同关切的。 暄桐教室…...
哪款电容笔适合开学季?电容笔和Apple Pencil的区别
其实,市场上一般的电容笔和Apple Pencil的最大差别,就在于Apple Pencil与普通电容笔两者的重量和压感。然而,由于苹果电容笔价格过高,目前电容笔的市场份额逐渐转向平替电容笔,平替电容笔其性能也逐渐得到改善。下面&a…...
Qt之Qprocess
QProcess 可用于完成启动外部程序,并与之交互通信。 一、启动外部程序的两种方式 1)一体式:void QProcess::start(const QString & program,const QStringList &arguments,OpenMode mode ReadWrite) 外部程序启动后&…...
为什么不愿意专升本 学历有什么用
专升本包括两种形式普通专升本和成人专升本。普通专升本毕业是全日制学历,考试仅有一次,错过不能补考所以考生不愿意选择,成人专升本毕业是非全日制学历,学历被国家承认,和普通高校毕业证有相同的使用效力。为何考生不…...
构造函数的使用大全
概述 在C中创建一个对象时,通常需要做一些数据初始化的工作,因此便提供了一个特殊的成员函数 —— 构造函数。一般情况下,并不需要程序员主动调用构造函数,而是在创建对象时,由系统自动调用。构造函数可以由程序员定义…...
ASP.NET Core MVC 项目 IOC容器
目录 一:什么是IOC容器 二:简单理解内置Ioc容器 三:依赖注入内置Ioc容器 四:生命周期 五:多种注册方式 一:什么是IOC容器 IOC容器是Inversion Of Control的缩写,翻译的意思就是控制反转。 …...
ARM工控机/网关- 钡铼技术
一、NXP处理器ARM控制器的介绍 NXP半导体是汽车、穿戴、消费电子等领域中智能机器解决方案的领先供应商。其产品线庞大,包括处理器、微控制器、快速设计平台、ARM控制器等。在物联网控制、汽车电子、安全应用等领域,NXP处理器ARM控制器已成为半导体行业的…...
为什么都在喊数据可视化?它究竟怎么做?
在数字化转型的浪潮中,不论是传统行业,还是新兴行业总会提到“数据可视化”这个词。那数据可视化到底是什么?为什么会受到那么多人追捧?又该怎么才能做到数据可视化呢? 一、数据可视化是什么? 首先“可视…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
