数字三角形加强版题解(组合计数+快速幂+逆元)
Description
一个无限行的数字三角形,第 i 行有 i 个数。第一行的第一个数是 1 ,其他的数满足如下关系:如果用 F[i][j] 表示第 i 行的第 j 个数,那么 F[i][j]=A∗F[i−1][j]+B∗F[i−1][j−1] (不合法的下标的数为 0 )。 当 A=2,B=3 时的数字三角形的前 5 行为: 1 2 3 4 12 9 8 36 54 27 16 96 216 216 81现在有 T 次询问,求 A=a,B=b 时数字三角形的第 n 行第 m 个数的值模 10^9+9 的结果。
Input
第一行为一个整数 T 。 接下一共 T 行,每行四个整数 a,b,n,m
Output
一共 T 行,每行一个整数,表示那个位置上的数的值。
Sample Input
2 2 3 3 3 3 1 4 1
Sample Output
9 27
Hint
n,t<=1e5;1<=m<=n; 0<=a,b<=1e9;
思路:
看例子:
1
A B
A^2 2*A*B B^2
A^3 3*A^2*B 3*A*B^2 B^3
我们可以看出答案是:
对于,分母我们利用费马小定理求逆元。
代码:
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<unordered_map>
#include<map>
using namespace std;
#define LL long long
const long long mod = 1e9 + 9;
const int N = 1e5 + 100;
LL xia[N];
LL quick(LL a, LL b, LL p)//根据a^(p-1)%p=1求a的逆元a^(p-2)%p;
{
LL res = 1;
while (b)
{
if (b & 1) res = (res * a) % p;
b >>= 1;
a = (a * a) % p;
}
return res;
}
LL seek(LL x, LL y)
{
LL e = 1;
while (y)
{
if (y & 1)
e = e * x % mod;
x = x * x % mod;
y = y >> 1;
}
return e;
}
int main()
{
int T;
LL a, b, n, m;
xia[0] = 1;
for (int i = 1; i <=1e5; i++)
xia[i] = (xia[i-1] * i) % mod;
scanf("%d", &T);
while (T--)
{
LL ans = 1;
scanf("%lld%lld%lld%lld", &a, &b, &n, &m);
ans = (ans*seek(a, n - m))%mod;
ans = (ans*seek(b, m-1))%mod;
ans = (ans * xia[n-1]) % mod;
ans = (ans * quick(xia[m-1], mod - 2, mod)) % mod;
ans= (ans * quick(xia[n-m], mod - 2, mod)) % mod;
printf("%lld\n",(ans % mod + mod) % mod);
}
return 0;
}
相关文章:
数字三角形加强版题解(组合计数+快速幂+逆元)
Description 一个无限行的数字三角形,第 i 行有 i 个数。第一行的第一个数是 1 ,其他的数满足如下关系:如果用 F[i][j] 表示第 i 行的第 j 个数,那么 F[i][j]A∗F[i−1][j]B∗F[i−1][j−1] (不合法的下标的数为 0 &a…...

MySQL:主从复制-基础复制(6)
环境 主服务器 192.168.254.1 从服务器(1)192.168.254.2 从服务器(2)192.168.253.3 我在主服务器上执行的操作会同步至从服务器 主服务器 yum -y install ntp 我们去配置ntp是需要让从服务器和我们主服务器时间同步 sed -i /…...

盒子模型的基础
盒子模型 边框(border) border可以设置元素的边框,边框分成三部分,边框的(粗细)边框的样式,边框的颜色 <style>div {width: 100px;height: 100px;border-width: 200;border-style: 边框…...

Go复合类型之数组类型
Go复合类型之数组 文章目录 Go复合类型之数组一、数组(Array)介绍1.1 基本介绍1.2 数组的特点 二、数组的声明与初始化2.1 数组声明2.2 常见的数据类型声明方法2.3 数组的初始化方式一:使用初始值列表初始化数组方法二:根据初始值个数自动推断数组长度方…...
rust闭包
一、闭包是什么 (一)闭包是什么 我们先来看看javascript中的闭包。 在函数外部无法读取函数内的局部变量。但是我们有时候需要得到函数内的局部变量,那么如何从外部读取局部变量?那就是在函数的内部,再定义一个函数。…...

通过位运算,实现单字段标识多个状态位
可能经常有如下这种需求: 需要一张表,来记录学员课程的通过与否. 课程数量不确定,往往很多,且会有变动,随时可能新增一门课. 这种情况下,在设计表结构时,一门课对应一个字段,就有些不合适, 因为不知道课程的具体数量,也无法应对后期课程的增加. 考虑只用一个状态标志位,利用位运…...

ALSA pcm接口的概念解释
PCM(数字音频)接口 PCM缩写: Pulse Code Modulation脉冲调制编码,我们理解为通过一定连续时间周期产生数字音频并带有音量样本的处理过程. 模拟信号被记录通过模拟到数字转换器,数字值(也就是某个特定时刻的音量值)获得来自ADC可以进一步处理,接下的图片展示的是个sine wavefor…...
logging的基本使用教程
logging的基本使用教程 一、简介: logging模块是Python的标准库,用于记录应用程序运行时的日志信息。使用logging模块可以帮助您在开发过程中调试代码、追踪问题和监控应用程序的运行状况。 二、使用教程 1、logging模块的基本使用方法: …...
ds套dp——考虑位置转移or值域转移:CF1762F
https://www.luogu.com.cn/problem/CF1762F 分析性质,就是我们选的数要么递增,要么递减(非严格)然后很明细是ds套dp, f i f_i fi 表示以 i i i 开头的答案然后考虑如何转移(ds套dp难点反而在转移而不是…...

stm32的GPIO寄存器操作以及GPIO外部中断,串口中断
一、学习参考资料 (1)正点原子的寄存器源码。 (2)STM32F103最小系统板开发指南-寄存器版本_V1.1(正点) (3)STM32F103最小系统板开发指南-库函数版本_V1.1(正点&a…...

生成对抗网络入门案例
前言 生成对抗网络(Generative Adversarial Networks,简称GANs)是一种用于生成新样本的机器学习模型。它由两个主要组件组成:生成器(Generator)和判别器(Discriminator)。生成器尝试…...

多头注意力机制
1、什么是多头注意力机制 从多头注意力的结构图中,貌似这个所谓的多个头就是指多组线性变换,但是并不是,只使用了一组线性变换层,即三个变换张量对 Q、K、V 分别进行线性变换,这些变化不会改变原有张量的尺寸…...

Qt + FFmpeg 搭建 Windows 开发环境
Qt FFmpeg 搭建 Windows 开发环境 Qt FFmpeg 搭建 Windows 开发环境安装 Qt Creator下载 FFmpeg 编译包测试 Qt FFmpeg踩坑解决方法1:换一个 FFmpeg 库解决方法2:把项目改成 64 位 后记 官方博客:https://www.yafeilinux.com/ Qt开源社区…...

[网鼎杯 2020 白虎组]PicDown python反弹shell proc/self目录的信息
[网鼎杯 2020 白虎组]PicDown - 知乎 这里确实完全不会 第一次遇到一个只有文件读取思路的题目 这里也确实说明还是要学学一些其他的东西了 首先打开环境 只存在一个框框 我们通过 目录扫描 抓包 注入 发现没有用 我们测试能不能任意文件读取 ?url../../../../etc/passwd …...

SDL2绘制ffmpeg解析的mp4文件
文章目录 1.FFMPEG利用命令行将mp4转yuv4202.ffmpeg将mp4解析为yuv数据2.1 核心api: 3.SDL2进行yuv绘制到屏幕3.1 核心api 4.完整代码5.效果展示6.SDL2事件响应补充6.1 处理方式-016.2 处理方式-02 本项目采用生产者消费者模型,生产者线程:使用ffmpeg将m…...

决策树C4.5算法的技术深度剖析、实战解读
目录 一、简介决策树(Decision Tree)例子: 信息熵(Information Entropy)与信息增益(Information Gain)例子: 信息增益比(Gain Ratio)例子: 二、算…...

LLMs Python解释器程序辅助语言模型(PAL)Program-aided language models (PAL)
正如您在本课程早期看到的,LLM执行算术和其他数学运算的能力是有限的。虽然您可以尝试使用链式思维提示来克服这一问题,但它只能帮助您走得更远。即使模型正确地通过了问题的推理,对于较大的数字或复杂的运算,它仍可能在个别数学操…...

【12】c++设计模式——>单例模式练习(任务队列)
属性: (1)存储任务的容器,这个容器可以选择使用STL中的队列(queue) (2)互斥锁,多线程访问的时候用于保护任务队列中的数据 方法:主要是对任务队列中的任务进行操作 &…...

Python之函数、模块、包库
函数、模块、包库基础概念和作用 A、函数 减少代码重复 将复杂问题代码分解成简单模块 提高代码可读性 复用老代码 """ 函数 """# 定义一个函数 def my_fuvtion():# 函数执行部分print(这是一个函数)# 定义带有参数的函数 def say_hello(n…...
SQL创建与删除索引
索引创建、删除与使用: 1.1 create方式创建索引:CREATE [UNIQUE – 唯一索引 | FULLTEXT – 全文索引 ] INDEX index_name ON table_name – 不指定唯一或全文时默认普通索引 (column1[(length) [DESC|ASC]] [,column2,…]) – 可以对多列建立组合索引 …...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
日常一水C
多态 言简意赅:就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过,当子类和父类的函数名相同时,会隐藏父类的同名函数转而调用子类的同名函数,如果要调用父类的同名函数,那么就需要对父类进行引用&#…...