当前位置: 首页 > news >正文

JAVA练习百题之求矩阵对角线之和

题目:求一个3*3矩阵对角线元素之和

程序分析

求一个3x3矩阵的对角线元素之和,我们需要将矩阵的左上到右下以及左下到右上两条对角线上的元素相加。

一个3x3矩阵如下所示:

1  2  3
4  5  6
7  8  9

左上到右下的对角线元素和为1 + 5 + 9 = 15,左下到右上的对角线元素和为7 + 5 + 3 = 15。

下面我们将使用三种不同的方法来实现这个任务,并分析它们的优缺点。

方法一:使用嵌套循环遍历矩阵

解题思路

我们可以使用嵌套循环遍历矩阵的元素,将左上到右下和左下到右上两条对角线上的元素相加。

实现代码

public class Main {public static void main(String[] args) {int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};int sum1 = 0, sum2 = 0;for (int i = 0; i < matrix.length; i++) {sum1 += matrix[i][i];            // 左上到右下的对角线sum2 += matrix[i][matrix.length - 1 - i]; // 左下到右上的对角线}System.out.println("Sum of diagonal elements (left to right): " + sum1);System.out.println("Sum of diagonal elements (right to left): " + sum2);}
}

优缺点

优点:

  • 简单易懂,容易实现。
  • 对于小规模矩阵,性能良好。

缺点:

  • 随着矩阵大小的增加,性能可能下降,时间复杂度为O(n)。

方法二:直接计算

解题思路

我们可以直接计算对角线元素之和,而不需要遍历整个矩阵。对于一个3x3矩阵,左上到右下的对角线元素之和为matrix[0][0] + matrix[1][1] + matrix[2][2],左下到右上的对角线元素之和为matrix[2][0] + matrix[1][1] + matrix[0][2]

实现代码

public class Main {public static void main(String[] args) {int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};int sum1 = matrix[0][0] + matrix[1][1] + matrix[2][2]; // 左上到右下的对角线int sum2 = matrix[2][0] + matrix[1][1] + matrix[0][2]; // 左下到右上的对角线System.out.println("Sum of diagonal elements (left to right): " + sum1);System.out.println("Sum of diagonal elements (right to left): " + sum2);}
}

优缺点

优点:

  • 直接计算,不需要遍历整个矩阵,性能较好。
  • 对于小规模矩阵,性能良好。

缺点:

  • 对于大规模矩阵,时间复杂度仍然为O(1),没有显著的性能提升。

方法三:使用循环

解题思路

我们可以使用循环来计算对角线元素之和,避免直接硬编码每个元素的位置。

实现代码

public class Main {public static void main(String[] args) {int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};int sum1 = 0, sum2 = 0;for (int i = 0; i < matrix.length; i++) {sum1 += matrix[i][i];            // 左上到右下的对角线sum2 += matrix[i][matrix.length - 1 - i]; // 左下到右上的对角线}System.out.println("Sum of diagonal elements (left to right): " + sum1);System.out.println("Sum of diagonal elements (right to left): " + sum2);}
}

优缺点

优点:

  • 使用循环计算,不需要硬编码每个元素的位置,具有一定的灵活性。
  • 对于小规模矩阵,性能良好。

缺点:

  • 对于大规模矩阵,时间复杂度仍然为O(n)。

总结

对于小规模矩阵,三种方法的性能都较好,且实现都相对简单。方法一和方法三具有一定的灵活性,可以用于不同大小的矩阵,但时间复杂度为O(n)。方法二直接计算,性能也较好,但不具备灵活性。

综合考虑,如果只处理小规模矩阵,方法一或方法三都可以选择,取决于个人喜好。如果需要处理大规模矩阵,方法二是一个更好的选择,因为它的时间复杂度是常数级的,不受矩阵大小的影响。

相关文章:

JAVA练习百题之求矩阵对角线之和

题目&#xff1a;求一个3*3矩阵对角线元素之和 程序分析 求一个3x3矩阵的对角线元素之和&#xff0c;我们需要将矩阵的左上到右下以及左下到右上两条对角线上的元素相加。 一个3x3矩阵如下所示&#xff1a; 1 2 3 4 5 6 7 8 9左上到右下的对角线元素和为1 5 9 15&…...

MEM备考打卡

今天是2023.10.9距离考试还有75天 三年前就想考MEM每次总是有各种原因最后选择了放弃&#xff0c;没时间、自制力差、害怕失败。。。。放弃后确还是会想如果自己当时没有放弃是不是就能考上&#xff0c;所以这次不管能不能考上拼搏75天&#xff0c;不能总是停留在想象。加油&a…...

短视频矩阵源码开发部署---技术解析

一、短视频SEO源码搜索技术需要考虑以下几点&#xff1a; 1. 关键词优化&#xff1a;通过研究目标受众的搜索习惯&#xff0c;选择合适的关键词&#xff0c;并在标题、描述、标签等元素中进行优化&#xff0c;提高视频的搜索排名。 2. 内容质量&#xff1a;优质、有吸引力的内…...

百度小程序制作源码 百度引流做关键词排名之技巧

百度作为国内最大的搜索引擎&#xff0c;对于关键词排名和流量获取的策略格外重要&#xff0c;下面给大家分享一个百度小程序制作源码和做百度引流、关键词排名的一些技巧。 移动设备的普及和微信小程序的火热&#xff0c;百度也推出了自己的小程序。百度小程序与微信小程序类…...

【计算机组成 课程笔记】7.3 高速缓存 Cache

课程链接&#xff1a; 计算机组成_北京大学_中国大学MOOC(慕课) 7 - 5 - 705-高速缓存的工作原理&#xff08;16-00--&#xff09;_哔哩哔哩_bilibili 在【计算机组成 课程笔记】7.1 存储层次结构概况_Elaine_Bao的博客-CSDN博客中提到&#xff0c;因为CPU和内存的速度差距越来…...

vscode搭建c/c++环境

1. 安装mingw64 2.vscode安装c/c插件&#xff0c;run插件 3.在workspace/.vscode文件夹下新建三个文件&#xff1a; 1&#xff09;c_cpp_properties.json { "configurations": [ { "name": "Win32", "includePath": [ "${wor…...

macOS Sonoma 14.0(23A344) 正式版带 OpenCore 0.9.6 和 FirPE 三分区镜像

macOS Sonoma 14.0(23A344) 正式版官方镜像百度网盘 请输入提取码 https://www.aliyundrive.com/s/sMUUedQdoiu 提取码 71dzmacOS Sonoma 14.0(23A344) 正式版带 OpenCore 0.9.6 和 FirPE 引导百度网盘 请输入提取码 https://www.123pan.com/s/o6d9-BdMX.html 提取码 5Pc2macO…...

神经网络(MLP多层感知器)

分类 神经网络可以分为多种不同的类型&#xff0c;下面列举一些常见的神经网络类型&#xff1a; 前馈神经网络&#xff08;Feedforward Neural Network&#xff09;&#xff1a;前馈神经网络是最基本的神经网络类型&#xff0c;也是深度学习中最常见的神经网络类型。它由若干个…...

git与github的交互(文件与文件夹的上传)

git与github的交互&#xff08;文件与文件夹的上传&#xff09; 准备&#xff1a;gitHub账号&#xff08;创建一个新项目&#xff09;与Git软件的安装 一&#xff1a;开启公钥SSH登录&#xff08;之前配置过就跳过&#xff09; 1.安装SSH 在本地新创建文件夹负责装载项目&a…...

Visual Studio常见编译错误记录

错误1&#xff1a;错误(活动)E0020未定义标识符 “sleep” sleep(3000); //将小写sleep改为 Sleep Sleep(3000);错误2&#xff1a;错误 C4996 ‘fopen’: This function or variable may be unsafe. Consider using fopen_s instead. To disable deprecation, use _CRT_SECURE…...

如何应对数据安全四大挑战?亚马逊云科技打出“组合拳”

数字经济时代&#xff0c;数据被公认为继土地、劳动力、资本、 技术之后的又一重要生产要素。对于企业而言&#xff0c;数据则是一切创新与关键决策的根源。 然而&#xff0c;企业在发挥数据资产的商业价值方面&#xff0c;却面临诸多挑战&#xff0c;比如敏感数据识别、跨组织…...

JavaScript——数据类型、类型转换

数据类型 计算机世界中的万事万物都是数据。 计算机程序可以处理大量的数据&#xff0c;为什么要给数据分类? 更加充分和高效的利用内存也更加方便程序员的使用数据 基本数据类型 number 数字型 JavaScript中正数、负数、小数等统一称为number JS是弱数据类型&#xff0…...

C位操作符

目录 一、位操作符 1.位与& 2.位或| 3.位取反~ 4.位异或^ 5.位与&#xff0c;位或&#xff0c;位异或的特点总结 6.左移位《《 右移位 》》 二、位与&#xff0c;位或&#xff0c;位异或在操作寄存器时的特殊作用 1.寄存器操作的要求&#xff08;特定位改变而不…...

【linux进程(三)】进程有哪些状态?--Linux下常见的三种进程状态

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:Linux从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学更多操作系统知识   &#x1f51d;&#x1f51d; Linux进程 1. 前言2. 操作系统…...

numString.charAt(i) - ‘0‘

numString.charAt(i) 表示获取字符串 numString 中第 i 个字符&#xff0c;这里假设该字符是数字 0 到 9 之间的一个字符。 0 是字符常量&#xff0c;表示数字 0 对应的字符。例如&#xff0c;字符 0 转换成数字就是 0&#xff0c;字符 1 转换成数字就是 1&#xff0c;以此类推…...

《Python 自动化办公应用大全》书籍推荐(包邮送书五本)

前言 随着科技的快速发展和智能化办公的需求增加&#xff0c;Python自动化办公成为了一种趋势。Python作为一种高级编程语言&#xff0c;具有简单易学、功能强大和开放源代码等优势&#xff0c;可以帮助我们更高效地完成日常办公任务。 Python自动化办公还可以帮助我们实现更…...

day57:ARMday4,程序状态寄存器读写指令、软中断指令、C和汇编的混合编程、开发板介绍

思维导图&#xff1a;有道云笔记...

el-cascader

场景&#xff1a; el-cascader lazy multiple 反显数据 非lazy的场景 selecetedOptions2: [[1, 2, 3],[1, 2, 4], ],可以正常回显&#xff1b;> ok lazy场景下&#xff1a; 是不可以回显的… 如果el-cascader是异步的单选 cascader默认会加载下个层级的&#xff08;子…...

图论第3天----第841题、第463题

# 图论第3天----第841题、第463题 文章目录 一、第841题--钥匙和房间二、第463题--岛屿的周长 ​ 又继续开始修行&#xff0c;把图论这块补上&#xff0c;估计要个5-6天时间。 一、第841题–钥匙和房间 ​ 有向图的遍历。dfs遍历3部曲做&#xff0c;思路也较顺----访问过的&a…...

软件测试/测试开发丨利用ChatGPT 生成自动化测试脚本

点此获取更多相关资料 简介 自动化测试脚本可以模拟用户与应用程序的交互&#xff0c;例如点击按钮、输入数据、导航到不同的页面等等&#xff0c;以验证应用程序的正确性、性能和稳定性。 自动化测试在回归测试、冒烟测试等测试流程中都可以极大地起到节省时间、节省人力的作…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...