LongLoRA:超长上下文,大语言模型高效微调方法
麻省理工学院和香港中文大学联合发布了LongLoRA,这是一种全新的微调方法,可以增强大语言模型的上下文能力,而无需消耗大量算力资源。
通常,想增加大语言模型的上下文处理能力,需要更多的算力支持。例如,将上下文长度从2048扩展至8192,需要多消耗16倍算力。
LongLoRA在开源模型LLaMA2 7B/13B/70B上进行了试验,将上下文原始长度扩展至32K、64K、100K,所需要的算力资源却很少。
开源地址:https://github.com/dvlab-research/LongLoRA
论文地址:https://arxiv.org/abs/2309.12307

LongLoRA的高效微调方法
根据LongLoRA的论文介绍,采用了两大步骤完成了高效微调。第一,在训练期间使用一种更简单的注意力形式(聚焦于特定信息),开发者称之为转变短注意力(S2-Attn)。
这种新的注意力方法有助于节省大量的计算能力,而且几乎与常规的注意力方法一样有效,在训练过程中发挥了重要作用。

第二,重新挖掘了一种有效扩大上下文(用于训练的信息量)的方法。开发人员发现,一种名为LoRA的方法对此非常有效,尤其是当与可训练的嵌入和规范化一起使用时。
LongLoRA在各种任务上都显示出了优异的结果,可以与不同大小的LLMs一起使用。它可以将用于训练的数据量从4k增加到100k,对于另一个模型,可以增加到32k,所有这些都在一台强大的计算机机器上完成。此外,它与其他现有技术兼容性很强,并不会改变原始模型设计架构。

此外,为了让 LongLoRA 更加实用、高效,开发者还整理了一个名为 LongQA 的数据集,其中包含 3000 多对用于训练的问题和答案。这使得 LongLoRA 还能有效改进大语言模型的输出能力。

研究发现
该研究评估了Proof-pile 和 PG19数据集上的不同模型。研究发现,在训练过程中,随着上下文大小的增加,模型的表现更好,显示了其微调方法的有效性。
简单来说,使用更多信息进行训练,将会带来更好的结果。例如,当上下文窗口大小从 8192 增加到 32768 时,一个模型的困惑度性能从 2.72 提高到 2.50。
该研究还探讨了这些模型可以在一台机器上处理多少上下文。开发人员扩展了模型以处理极长的上下文,并发现模型仍然表现良好,尽管上下文尺寸较小时性能有所下降。

除了语言建模之外,该研究还测试了其他任务,包括在很长的对话中找到特定的主题。开发人员的模型在这项任务中的表现与最先进的模型类似,甚至在某些情况下表现得更好。值得一提的是,与竞争对手相比,开发人员的模型能够更有效地适应开源数据。
LongLoRA表明,大模型能够处理的信息越多,理解语言的能力就越强。并且它不仅擅长处理长文本,而且LongLoRA也非常擅长在长对话中找到特定的主题。这表明它可以处理现实世界中复杂而混乱的任务。
但因为加大了上下文窗口,所以LongLoRA在处理较短的文本片段时会有一些问题,这个问题作者还没有找到原因。

总体来说,LongLoRA 在大型语言模型领域提出了创新方法,在处理大量信息时,也可以更轻松、更高效地微调这些模型,而必须消耗更多的算力资源。
本文素材来源LongLoRA论文,如有侵权请联系删除
相关文章:
LongLoRA:超长上下文,大语言模型高效微调方法
麻省理工学院和香港中文大学联合发布了LongLoRA,这是一种全新的微调方法,可以增强大语言模型的上下文能力,而无需消耗大量算力资源。 通常,想增加大语言模型的上下文处理能力,需要更多的算力支持。例如,将…...
【漏洞复现】某 NVR 视频存储管理设备远程命令执行
漏洞描述 NUUO NVR是中国台湾NUUO公司旗下的一款网络视频记录器,该设备存在远程命令执行漏洞,攻击者可利用该漏洞执行任意命令,进而获取服务器的权限。 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律&am…...
若依前端-应用路径发布和使用
官网的路径:前端手册 | RuoYi 应用路径 有些特殊情况需要部署到子路径下,例如:https://www.ruoyi.vip/admin,可以按照下面流程修改。 1、修改vue.config.js中的publicPath属性 publicPath: process.env.NODE_ENV "produ…...
Mojo 正式发布,Rust 能否与之匹敌?
9 月 7 日,Modular 公司宣布正式发布 Mojo:Mojo 现在已经开放本地下载——初步登陆 Linux 系统,并将很快提供 Mac 与 Windows 版本。据介绍,Mojo 最初的目标是比 Python 快 35000 倍,近日该团队表示,Mojo 将…...
opencv实现抠图,图像拼接,图像融合
在OpenCV中,你可以使用图像拼接、抠图和将图像的一部分放在另一张图片的指定位置。以下是示例代码,演示如何执行这些操作: 图像拼接 要将两张图像拼接在一起,你可以使用 cv::hconcat(水平拼接)和 cv::vco…...
照片处理软件Lightroom Classic mac中文版功能介绍(Lrc2021)
Lightroom Classic 2022 mac是一款桌面编辑工具,lrc2021 mac包括提亮颜色、使灰暗的摄影更加生动、删除瑕疵、将弯曲的画面拉直等。您可以在电脑桌面上轻松整理所有照片。使用Lightroom Classic, 轻松整理编辑照片,为您的作品锦上添花。 Ligh…...
asp.net高校留学生信息管理系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio
一、源码特点 asp.net 高校留学生信息管理系统 是一套完善的web设计管理系统,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为vs2010,数据库为sqlserver2008,使 用c#语言开发 asp.net留学生信息管理系…...
C# - Opencv应用(1) 之VS下环境配置详解
C# - Opencv应用(1) 之VS下环境配置详解 有时候,单纯c#做前端时会联合C实现的dll来落地某些功能由于有时候会用C - Opencv实现算法后封装成dll,但是有时候会感觉麻烦,不如直接通过C#直接调用Opencv在此慢慢总结下C# -…...
rsync 远程同步实现快速、安全、高效的异地备份
目录 1 rsync 远程同步 1.1 rsync是什么? 1.2 rsync同步方式 1.3 rsync的特性 1.4 rsync的应用场景 1.5 rsync与cp、scp对比 1.6 rsync同步源 2 配置rsync源服务器 2.1 建立/etc/rsyncd.conf 配置文件 3 发起端 4 发起端配置 rsyncinotify 4.1 修改rsync…...
医学访问学者面试技巧
医学访问学者面试是一个非常重要的环节,它决定了你是否能够获得这个宝贵的机会去国外的大学或研究机构学习和研究。在这篇文章中,知识人网小编将分享一些关于医学访问学者面试的技巧,帮助你在面试中表现出色。 1. 准备充分 在参加医学访问学…...
【19】c++设计模式——>桥接模式
桥接模式的定义 C的桥接模式(Bridge Pattern)是一种结构型设计模式,它将抽象部分与实现部分分离,使得它们可以独立地变化。桥接模式的核心思想是利用组合关系代替继承关系,将系统划分成多个独立的、功能不同的类层次结…...
网络安全:六种常见的网络攻击手段
1、什么是VPN服务? 虚拟专用网络(或VPN)是您的设备与另一台计算机之间通过互联网的安全连接。VPN服务可用于在离开办公室时安全地访问工作计算机系统。但它们也常用于规避政府审查制度,或者在电影流媒体网站上阻止位置封锁&#…...
使用HbuilderX运行uniapp中小程序项目
下载HbuilderX,下载链接: HBuilderX-高效极客技巧 导入相关项目。下载微信开发者工具。使用微信开发者工具打开:注意:如果是第一次使用,需要先配置小程序ide的相关路径,才能运行成功。如下图,需…...
基于PHP的水果商城网站,mysql数据库,前台+后台,原生PHP,PHP study(小皮),完美运行,有一万字报告。
目录 演示视频 基本介绍 论文目录 购买流程 系统截图 演示视频 基本介绍 基于PHP的水果商城网站,mysql数据库,前台后台,原生PHP,PHP study(小皮),完美运行,有一万字报告。 前…...
【uniapp】自定义导航栏时,设置安全距离,适配不同机型
1、在pages.json中,给对应的页面设置自定义导航栏样式 {"path": "pages/index/index","style": {"navigationStyle": "custom","navigationBarTextStyle": "white","navigationBarTitl…...
JAVA经典百题之数组逆序输出
题目:将一个数组逆序输出。 程序分析 要将一个数组逆序输出,即将数组中的元素顺序颠倒过来,可以使用多种方法。基本思路是创建一个新数组或修改原数组,将元素的顺序颠倒。 方法1: 创建新数组实现 思路 创建一个新的数组,长度…...
vue run dev 配置nginx
由于项目有多个vue项目,在开发过程中需要联调,而不是每次发布后再联调. 比如有2个项目: main-project(主项目),test1-project. 由于是多项目,每个项目相当于有一个独立的域,这里test1-project设置域名称为test1 vue修改 在vite.config.ts中配置一个base:"/test1/"…...
Python实现RNN算法对MFCC特征的简单语音识别
Python实现RNN算法对MFCC特征的简单语音识别 1、实现步骤 借助深度学习库 TensorFlow/Keras 来构建模型 1.对标签进行编码,将文本标签转换为整数标签。 2.对 MFCC 特征数据进行填充或截断,使其长度一致,以便于输入到 RNN 模型中 3.如果是二维数据需要转成三维: Simpl…...
借助PLC-Recorder,汇川中型PLC(AM、AC系列,CODESYS平台)2ms高速采集的方法
高速数据采集要保证速度,也要保证时刻的准确性。在windows系统里,时间稳定性是个很难的问题。如果PLC发送的数据里带有时间信息,则可以由PLC来保证采样周期的稳定性。 从V2.12版本开始,PLC-Recorder软件可以处理发送电文里的时间…...
vscode package.json文件开头的{总是提升警告
警告如下 Problems loading reference https://json.schemastore.org/stylelintrc.json: Unable to load schema from https://json.schemastore.org/stylelintrc.json: read ECONNRESET. 解决如下 在设置(settings.json)里 新增一条属性 "ht…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
日常一水C
多态 言简意赅:就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过,当子类和父类的函数名相同时,会隐藏父类的同名函数转而调用子类的同名函数,如果要调用父类的同名函数,那么就需要对父类进行引用&#…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
