应用DeepSORT实现目标跟踪
在ByteTrack被提出之前,可以说DeepSORT是最好的目标跟踪算法之一。本文,我们就来应用这个算法实现目标跟踪。
DeepSORT的官方网址是https://github.com/nwojke/deep_sort。但在这里,我们不使用官方的代码,而使用第三方代码,其网址为https://github.com/levan92/deep_sort_realtime。
下面我们就来应用DeepSORT。首先在虚拟环境内安装必要的软件包:
conda install python=3.8
pip install deep-sort-realtime
可以看出,DeepSORT算法只是需要几个常规的软件包:numpy、scipy和opencv-python,对用户十分友好。
使用DeepSORT也很方便,先导入DeepSORT:
from deep_sort_realtime.deepsort_tracker import DeepSort
实例化:
tracker = DeepSort()
DeepSort有一些输入参数,在这里只介绍几个常用的参数:
max_iou_distance:IoU的门控阈值,大于该值的关联会被忽略,默认值为0.7
max_age:当遗漏次数大于该值时轨迹会被删除,默认值为30
n_init:在初始阶段轨迹被保留的帧数,默认值为3
nms_max_overlap:非最大值抑制阈值,如果该值为1.0,表示不使用非最大值抑制,默认值为1.0
max_cosine_distance:余弦距离阈值,默认值为0.2
nn_budget:外观描述符的最大尺寸(int类型),如果为None,则不强制执行,默认值为None
实现目标跟踪:
tracks = tracker.update_tracks(bbs, frame=frame)
bbs为目标检测器的结果列表,每个结果是一个元组,形式为([left,top,w,h],置信值,类型),其中类型为字符串型
frame为帧图像
输出tracks为目标跟踪结果,使用for循环可以得到各个目标的跟踪信息:
for track in tracks:
下面介绍一些track的常用属性和方法:
track_id:目标ID
orginal_ltwh、det_conf、det_class:分别表示目标边框信息、置信值和类型,这三个值都是由tracker.update_tracks传入系统的原始目标的信息,但此时已匹配上了目标ID
to_ltrb()和to_ltwh():得到目标边框信息,两者的形式不同
is_confirmed():表示如果该目标ID被确认,则返回True
下面我们就给出DeepSORT实现目标跟踪的完整程序,在这里,我们仍然使用YOLOv8作为目标检测器:
import numpy as np
import cv2
from ultralytics import YOLO
from deep_sort_realtime.deepsort_tracker import DeepSortmodel = YOLO('yolov8l.pt')cap = cv2.VideoCapture("D:/track/Highway Traffic.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
fNUMS = cap.get(cv2.CAP_PROP_FRAME_COUNT)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
videoWriter = cv2.VideoWriter("D:/track/mytrack.mp4", fourcc, fps, size)tracker = DeepSort(max_age=5)def box_label(image, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))cv2.rectangle(image, p1, p2, color, thickness=1, lineType=cv2.LINE_AA)if label:w, h = cv2.getTextSize(label, 0, fontScale=2 / 3, thickness=1)[0] outside = p1[1] - h >= 3p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3cv2.rectangle(image, p1, p2, color, -1, cv2.LINE_AA)cv2.putText(image,label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),0, 2/3, txt_color, thickness=1, lineType=cv2.LINE_AA)while cap.isOpened():success, frame = cap.read()if success: results = model(frame,conf=0.4)outputs = results[0].boxes.data.cpu().numpy()detections = []if outputs is not None:for output in outputs:x1, y1, x2, y2 = list(map(int, output[:4]))if output[5] == 2:detections.append(([x1, y1, int(x2-x1), int(y2-y1)], output[4], 'car'))elif output[5] == 5:detections.append(([x1, y1, int(x2-x1), int(y2-y1)], output[4], 'bus'))elif output[5] == 7:detections.append(([x1, y1, int(x2-x1), int(y2-y1)], output[4], 'truck'))tracks = tracker.update_tracks(detections, frame=frame)for track in tracks:if not track.is_confirmed():continuetrack_id = track.track_idbbox = track.to_ltrb()box_label(frame, bbox, '#'+str(int(track_id))+ track.det_class , (167, 146, 11))cv2.putText(frame, "https://blog.csdn.net/zhaocj", (25, 50),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)cv2.imshow("YOLOv8 Tracking", frame)videoWriter.write(frame)if cv2.waitKey(1) & 0xFF == ord("q"):breakelse:breakcap.release()
videoWriter.release()
cv2.destroyAllWindows()
相关文章:
应用DeepSORT实现目标跟踪
在ByteTrack被提出之前,可以说DeepSORT是最好的目标跟踪算法之一。本文,我们就来应用这个算法实现目标跟踪。 DeepSORT的官方网址是https://github.com/nwojke/deep_sort。但在这里,我们不使用官方的代码,而使用第三方代码&#…...
Beyond Compare 4 30天评估到期 解决方法
Beyond Compare 4 用习惯了,突然提示评估到期了,糟心😄 该方法将通过修改注册表,使BeyondCompare 版本4可以恢复到未评估状态,使其可以持续使用30天评估😄。 修改注册表 第一步:打开注册表。 在…...
化妆品用乙基己基甘油全球市场总体规模2023-2029
乙基己基甘油又名辛氧基甘油,分子式 C11H24O3,分子量 204.306,沸点 325℃,密度 0.962,无色液体,涂抹性能适中的润肤剂、保湿剂及润湿剂。它能够在提高配方滋润效果的同时又具有柔滑的肤感。加入在某些膏霜体…...
springboot家政服务管理平台springboot29
大家好✌!我是CZ淡陌。一名专注以理论为基础实战为主的技术博主,将再这里为大家分享优质的实战项目,本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目,希望你能有所收获,少走一些弯路…...
【网络安全】如何保护IP地址?
使用防火墙是保护IP地址的一个重要手段。防火墙可以监控和过滤网络流量,并阻止未经授权的访问。一家网络安全公司的研究显示,超过80%的企业已经部署了防火墙来保护他们的网络和IP地址。 除了防火墙,定期更新操作系统和应用程序也是保护IP地址…...
2023年失业了,想学一门技术可以学什么?
有一个朋友,大厂毕业了,原本月薪估计有5w吧,年终奖也不错,所以早早的就买了房生了娃,一直是人生赢家的姿态。 但是今年突然就被毕业了,比起房货还有个几百万没还来说,他最想不通的是自己的价值…...
MySQL-MVCC(Multi-Version Concurrency Control)
MySQL-MVCC(Multi-Version Concurrency Control) MVCC(多版本并发控制):为了解决数据库并发读写和数据一致性的问题,是一种思想,可以有多种实现方式。 核心思想:写入时创建行的新版…...
ArcGIS中的镶嵌数据集与接缝线
此处介绍一种简单方法,根据生成的轮廓线来做镶嵌数据集的拼接。 一、注意修改相邻影像的上下重叠。注意修改ZOrder和每幅影像的范围。 二、修改新的镶嵌线并且导出影像文件。 三、还有其他方法和注意事项。...
网络安全工程师自主学习计划表(具体到阶段目标,保姆级安排,就怕你学不会!)
前言 接下来我将给大家分享一份网络安全工程师自学计划指南,全文将从学习路线、学习规划、学习方法三个方向来讲述零基础小白如何通过自学进阶网络安全工程师,全文篇幅有点长,同学们可以先点个收藏,以免日后错过了。 目录 前言…...
Linux 根据 PID 查看进程名称
ps aux | grep PID...
Python二级 每周练习题21
练习一: 提示用户输入两个正整数,编程求出介于这两个数之间的所有质数并打印输出。 显示格式为“*数是质数。” 答案: x(int(input(请输入第一个正整数:)),int(input(请输入第二个正整数:))) #变量x存放input输入的两个整数的元组 Num1min(x) #判断输入数字…...
【算法训练-数组 三】【数组矩阵】螺旋矩阵、旋转图像、搜索二维矩阵
废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是螺旋矩阵,使用【二维数组】这个基本的数据结构来实现 螺旋矩阵【EASY】 二维数组的结构特性入手 题干 解题思路 根据题目示例 mat…...
LED灯实验--汇编
asm-led.S .text .global _start _start: /* 1. led灯的初始化 *//* 1.1 使能GPIOE、DPIOF外设控制器的时钟 */ldr r0, 0x50000A28ldr r1, [r0]orr r1, r1, #(0x3 << 4)str r1, [r0]/* 1.2 设置PE10、PE8、PF10引脚为输出模式 */ldr r0, 0x50006000ldr r1, [r0]bic r1,…...
Android多线程学习:线程池(一)
一、概念 线程池:创建并维护一定数量的空闲线程,当有需要执行的任务,就交付给线程池中的一个线程,任务执行结束后,该线程也不会死亡,而是回到线程池中重新变为空闲状态。 线程池优点: 1、重用…...
网络安全(黑客技术)—小白自学笔记
1.网络安全是什么 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 2.网络安全市场 一、是市场需求量高; 二、则是发展相对成熟入…...
掌握核心技巧就能创建完美的目录!如何在Word中自动创建目录
目录是Word布局的一个重要因素,尤其是在编写较长的文档时。那么,你如何在你的作品中添加目录呢?在这篇文章中,我将分享一些基于Word2016自动创建目录的经验。希望它能或多或少地帮到你。 自动创建目录 1、输入目录文本的名称&am…...
正则表达式中re.match、re.search、re.findall的用法和区别
这位作者的例子写的非常好,记录一下,目前用到的比较多的是findall 正则表达式中re.match、re.search、re.findall的用法和区别_<re.match object; span(0, 270), match<a href"/-CSDN博客...
算法题:买卖股票的最佳时机含手续费(动态规划解法贪心解法-详解)
这道题有两种解法:动态规划 or 贪心算法。 贪心算法的提交结果要比动态规划好一些,总体上动态规划的解法更容易想到。(完整题目附在了最后) 1、动态规划解法 设置两个数,dp[0]表示遍历到股票prices[i]时手里没有股…...
【gcc】RtpTransportControllerSend学习笔记 4:码率分配
本文是woder大神 的文章的学习笔记。 大神的webrtc源码分析(8)-拥塞控制(上)-码率预估 详尽而具体,堪称神作。 gcc保障带宽公平性,预估码率后要分配码率,实现qos效果: webrtc源码分析(9)-拥塞控制(下)-码率分配 是 woder 大神进一步给出的另一篇神作。 本文是对(https://w…...
「专题速递」AR协作、智能NPC、数字人的应用与未来
元宇宙是一个融合了虚拟现实、增强现实、人工智能和云计算等技术的综合概念。它旨在创造一个高度沉浸式的虚拟环境,允许用户在其中交互、创造和共享内容。在元宇宙中,人们可以建立虚拟身份、参与虚拟社交,并享受无限的虚拟体验。 作为互联网大…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
