深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict
深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict
- 1、nn.Sequential 、 nn.ModuleList 、 nn.ModuleDict 类都继承自 Module 类。
- 2、nn.Sequential、nn.ModuleList 和 nn.ModuleDict语法
- 3、Sequential 、ModuleDict、 ModuleList 的区别
- 4、ModuleDict、 ModuleList 的区别
- 5、nn.ModuleList 、 nn.ModuleDict 与 Python list、Dict 的区别
1、nn.Sequential 、 nn.ModuleList 、 nn.ModuleDict 类都继承自 Module 类。
2、nn.Sequential、nn.ModuleList 和 nn.ModuleDict语法
net = nn.Sequential(nn.Linear(32, 64), nn.ReLU()) →→只需要将定义的层按照顺序写入括号内就可以了
net = nn.ModuleList([nn.Linear(32, 6)4, nn.ReLU()]) →→在定义式需要加上中括号[],将定义的层写入到中括号内
net = nn.ModuleDict({‘linear’: nn.Linear(32, 64), ‘act’: nn.ReLU()}) →→需要大括号,将定义的层以键值对的形式写入
代码
import torch
import torch.nn as nnnet1 = nn.Sequential(nn.Linear(32, 64), nn.ReLU())
net2 = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])
net3 = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})print(net1)
print(net2)
print(net3)

3、Sequential 、ModuleDict、 ModuleList 的区别
1、 ModuleList 仅仅是一个储存各种模块的列表,这些模块之间没有联系也没有顺序(所以不用保证相邻层的输入输出维度匹配),而且没有实现 forward 功能需要自己实现
2、和 ModuleList 一样, ModuleDict 实例仅仅是存放了一些模块的字典,并没有定义 forward 函数需要自己定义
3、而 Sequential 内的模块需要按照顺序排列,要保证相邻层的输入输出大小相匹配,内部 forward 功能已经实现,所以,直接如下写模型,是可以直接调用的,不再需要写forward,sequential 内部已经有 forward
代码:
import torch
import torch.nn as nnnet1 = nn.Sequential(nn.Linear(32, 64), nn.ReLU())
net2 = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])
net3 = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})x = torch.randn(8, 3, 32)
print(net1(x).shape) # 输出内容: torch.Size([8, 3, 64])
# print(net2(x).shape) # 会报错,提示缺少forward
# print(net3(x).shape) # 会报错,提示缺少forward
为 nn.ModuleList 写 forward 函数
代码:
import torch
import torch.nn as nnclass My_Model(nn.Module):def __init__(self):super(My_Model, self).__init__()self.layers = nn.ModuleList([nn.Linear(32, 64),nn.ReLU()])def forward(self, x):for layer in self.layers:x = layer(x)return xnet = My_Model()x = torch.randn(8, 3, 32)
out = net(x)
print(out.shape)
输出结果:

为 nn.ModuleDict 写 forward 函数
import torch
import torch.nn as nnclass My_Model(nn.Module):def __init__(self):super(My_Model, self).__init__()self.layers = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})def forward(self, x):for layer in self.layers.values():x = layer(x)return xnet = My_Model()
x = torch.randn(8, 3, 32)
out = net(x)
print(out.shape)
将 nn.ModuleList 转换成 nn.Sequential
import torch
import torch.nn as nnmodule_list = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])
net = nn.Sequential(*module_list)
x = torch.randn(8, 3, 32)
print(net(x).shape)
输出如下:

将 nn.ModuleDict 转换成 nn.Sequential
import torch
import torch.nn as nnmodule_dict = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})
net = nn.Sequential(*module_dict.values())
x = torch.randn(8, 3, 32)
print(net(x).shape)
输出如下:

4、ModuleDict、 ModuleList 的区别
1、ModuleDict 可以给每个层定义名字,ModuleList 不会
2、ModuleList 可以通过索引读取,并且使用 append 添加元素
import torch.nn as nnnet = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])
net.append(nn.Linear(64, 10))
print(net)
3、ModuleDict 可以通过 key 读取,并且可以像 字典一样添加元素
import torch.nn as nnnet = nn.ModuleDict({'linear1': nn.Linear(32, 64), 'act': nn.ReLU()})
net['linear2'] = nn.Linear(64, 128)
print(net)
5、nn.ModuleList 、 nn.ModuleDict 与 Python list、Dict 的区别
import torch.nn as nnnet = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])for name, param in net.named_parameters():print(name, param)print("-----------------------------")
for name, param in net.named_parameters():print(name, param.size())
显示结果如下:

import torch.nn as nnnet = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})for name, param in net.named_parameters():print(name, param.size())
print("--------------------------")for name, param in net.named_parameters():print(name, param.size())
显示结果:

相关文章:
深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict
深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict 1、nn.Sequential 、 nn.ModuleList 、 nn.ModuleDict 类都继承自 Module 类。2、nn.Sequential、nn.ModuleList 和 nn.ModuleDict语法3、Sequential 、ModuleDict、 ModuleList 的区别…...
【DevOps】搭建你的第一个 Docker 应用栈
搭建你的第一个 Docker 应用栈 1.Docker 集群部署2.第一个 Hello World2.1 获取应用栈各节点所需镜像2.2 应用栈容器节点互联2.3 应用栈容器节点启动2.4 应用栈容器节点的配置2.4.1 Redis Master 主数据库容器节点的配置2.4.2 Redis Slave 从数据库容器节点的配置2.4.3 Redis 数…...
软件测试职业生涯需要编写的全套文档模板,收藏这一篇就够了 ~
作为一名测试工程师,在整个的职业生涯中,会涉及到各种不同类型的文档编写,大体包括如下: 对应文档模板及文档编写视频如下: 一、测试岗位必备的文档 在一个常规的软件测试流程中,会涉及到测试计划、测试方…...
【Kubernetes】Pod——k8s中最重要的对象之一
Pod是什么?如何使用Pod?资源共享和通信Pod 中的存储Pod 联网:跨 Pod 通信 静态 Pod感谢 💖 Pod是什么? Pod是k8s中创建和管理的、最小的可部署的计算单元。它包含一个或多个容器。就像豌豆荚里面包含了多个豌豆一样。…...
vue-cli-service: command not found问题解决
解决方案:重新安装一下: npm install -g vue/cli...
每日一练 | 华为认证真题练习Day117
1、缺省情况下,广播网络上OSPF协议Deadtime是? A. 20s B. 40s C. 10s D. 30s 2、当两台OSPF路由器形成TWO-WAY邻居关系时,LSDB已完成同步,但是SPF算法尚未运行。 A. 对 B. 错 3、以下哪种协议不属于文件传输协? …...
【JVM】垃圾回收(GC)详解
垃圾回收(GC)详解 一. 死亡对象的判断算法1. 引用计数算法2. 可达性分析算法 二. 垃圾回收算法1. 标记-清除算法2. 复制算法3. 标记-整理算法4. 分代算法 三. STW1. 为什么要 STW2. 什么情况下 STW 四. 垃圾收集器1. CMS收集器(老年代收集器&…...
阿里云服务器公网带宽多少钱1M?
阿里云服务器公网带宽计费模式按固定带宽”计费多少钱1M?地域不同带宽价格不同,北京、杭州、深圳等大陆地域价格是23元/Mbps每月,中国香港1M带宽价格是30元一个月,美国硅谷是30元一个月,日本东京1M带宽是25元一个月&am…...
应用DeepSORT实现目标跟踪
在ByteTrack被提出之前,可以说DeepSORT是最好的目标跟踪算法之一。本文,我们就来应用这个算法实现目标跟踪。 DeepSORT的官方网址是https://github.com/nwojke/deep_sort。但在这里,我们不使用官方的代码,而使用第三方代码&#…...
Beyond Compare 4 30天评估到期 解决方法
Beyond Compare 4 用习惯了,突然提示评估到期了,糟心😄 该方法将通过修改注册表,使BeyondCompare 版本4可以恢复到未评估状态,使其可以持续使用30天评估😄。 修改注册表 第一步:打开注册表。 在…...
化妆品用乙基己基甘油全球市场总体规模2023-2029
乙基己基甘油又名辛氧基甘油,分子式 C11H24O3,分子量 204.306,沸点 325℃,密度 0.962,无色液体,涂抹性能适中的润肤剂、保湿剂及润湿剂。它能够在提高配方滋润效果的同时又具有柔滑的肤感。加入在某些膏霜体…...
springboot家政服务管理平台springboot29
大家好✌!我是CZ淡陌。一名专注以理论为基础实战为主的技术博主,将再这里为大家分享优质的实战项目,本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目,希望你能有所收获,少走一些弯路…...
【网络安全】如何保护IP地址?
使用防火墙是保护IP地址的一个重要手段。防火墙可以监控和过滤网络流量,并阻止未经授权的访问。一家网络安全公司的研究显示,超过80%的企业已经部署了防火墙来保护他们的网络和IP地址。 除了防火墙,定期更新操作系统和应用程序也是保护IP地址…...
2023年失业了,想学一门技术可以学什么?
有一个朋友,大厂毕业了,原本月薪估计有5w吧,年终奖也不错,所以早早的就买了房生了娃,一直是人生赢家的姿态。 但是今年突然就被毕业了,比起房货还有个几百万没还来说,他最想不通的是自己的价值…...
MySQL-MVCC(Multi-Version Concurrency Control)
MySQL-MVCC(Multi-Version Concurrency Control) MVCC(多版本并发控制):为了解决数据库并发读写和数据一致性的问题,是一种思想,可以有多种实现方式。 核心思想:写入时创建行的新版…...
ArcGIS中的镶嵌数据集与接缝线
此处介绍一种简单方法,根据生成的轮廓线来做镶嵌数据集的拼接。 一、注意修改相邻影像的上下重叠。注意修改ZOrder和每幅影像的范围。 二、修改新的镶嵌线并且导出影像文件。 三、还有其他方法和注意事项。...
网络安全工程师自主学习计划表(具体到阶段目标,保姆级安排,就怕你学不会!)
前言 接下来我将给大家分享一份网络安全工程师自学计划指南,全文将从学习路线、学习规划、学习方法三个方向来讲述零基础小白如何通过自学进阶网络安全工程师,全文篇幅有点长,同学们可以先点个收藏,以免日后错过了。 目录 前言…...
Linux 根据 PID 查看进程名称
ps aux | grep PID...
Python二级 每周练习题21
练习一: 提示用户输入两个正整数,编程求出介于这两个数之间的所有质数并打印输出。 显示格式为“*数是质数。” 答案: x(int(input(请输入第一个正整数:)),int(input(请输入第二个正整数:))) #变量x存放input输入的两个整数的元组 Num1min(x) #判断输入数字…...
【算法训练-数组 三】【数组矩阵】螺旋矩阵、旋转图像、搜索二维矩阵
废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是螺旋矩阵,使用【二维数组】这个基本的数据结构来实现 螺旋矩阵【EASY】 二维数组的结构特性入手 题干 解题思路 根据题目示例 mat…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
