【yolo系列:yolov7训练添加spd-conv】
系列文章目录
`yolov7训练添加spd-conv
文章目录
- 系列文章目录
- 一、spd-conv是什么?
- 二、使用步骤
- 1.第一步:先在models/common.py加上
- 2.第二步:models/yolo.py加上
- 2.第三步:修改yolov7的yaml文件
- 总结
提示:以下是本篇文章正文内容,下面案例可供参考
一、spd-conv是什么?
SPD-Conv是一种新的构建块,用于替代现有的CNN体系结构中的步长卷积和池化层。它由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成。
空间到深度(SPD)层的作用是将输入特征图的每个空间维度降低到通道维度,同时保留通道内的信息。这可以通过将输入特征图的每个像素或特征映射到一个通道来实现。在这个过程中,空间维度的大小会减小,而通道维度的大小会增加。
非步长卷积(Conv)层是一种标准的卷积操作,它在SPD层之后进行。与步长卷积不同,非步长卷积不会在特征图上移动,而是对每个像素或特征映射进行卷积操作。这有助于减少在SPD层中可能出现的过度下采样问题,并保留更多的细粒度信息。
SPD-Conv的组合方式是将SPD层和Conv层串联起来。具体来说,输入特征图首先通过SPD层进行转换,然后输出结果再通过Conv层进行卷积操作。这种组合方式可以在不丢失信息的情况下减少空间维度的尺寸,同时保留通道内的信息,有助于提高CNN对低分辨率图像和小型物体的检测性能。
总结起来,SPD-Conv是一种新的构建块,旨在解决现有CNN体系结构中步长卷积和池化层的问题。它由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成,能够提高模型对低分辨率图像和小型物体的检测性能,并降低对“良好质量"输入的依赖。
二、使用步骤
1.第一步:先在models/common.py加上
class space_to_depth(nn.Module):# Changing the dimension of the Tensordef __init__(self, dimension=1):super().__init__()self.d = dimensiondef forward(self, x):return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
2.第二步:models/yolo.py加上
elif m is space_to_depth:c2 = 4 * ch[f]
同时在769行里面加入space to death
全部代码
if m in [nn.Conv2d, Conv, RobustConv, RobustConv2, DWConv, GhostConv, RepConv, RepConv_OREPA, DownC,SPP, SPPF, SPPCSPC, GhostSPPCSPC, MixConv2d, Focus, Stem, GhostStem, CrossConv,Bottleneck, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,RepBottleneck, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,Res, ResCSPA, ResCSPB, ResCSPC,RepRes, RepResCSPA, RepResCSPB, RepResCSPC,ResX, ResXCSPA, ResXCSPB, ResXCSPC,RepResX, RepResXCSPA, RepResXCSPB, RepResXCSPC,Ghost, GhostCSPA, GhostCSPB, GhostCSPC,SwinTransformerBlock, STCSPA, STCSPB, STCSPC,SwinTransformer2Block, ST2CSPA, ST2CSPB, ST2CSPC,Conv_ATT,SPPCSPC_ATT,CBAM]:c1, c2 = ch[f], args[0]if c2 != no: # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in [DownC, SPPCSPC, GhostSPPCSPC,BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,ResCSPA, ResCSPB, ResCSPC,RepResCSPA, RepResCSPB, RepResCSPC,ResXCSPA, ResXCSPB, ResXCSPC,RepResXCSPA, RepResXCSPB, RepResXCSPC,GhostCSPA, GhostCSPB, GhostCSPC,STCSPA, STCSPB, STCSPC,ST2CSPA, ST2CSPB, ST2CSPC,space_to_depth]:args.insert(2, n) # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum([ch[x] for x in f])elif m is Chuncat:c2 = sum([ch[x] for x in f])elif m is Shortcut:c2 = ch[f[0]]elif m is Foldcut:c2 = ch[f] // 2elif m in [Detect, IDetect, IAuxDetect, IBin, IKeypoint]:args.append([ch[x] for x in f])if isinstance(args[1], int): # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)elif m is ReOrg:c2 = ch[f] * 4elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2elif m is space_to_depth:c2 = 4 * ch[f]else:c2 = ch[f]
2.第三步:修改yolov7的yaml文件
# parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple# anchors
anchors:- [12,16, 19,36, 40,28] # P3/8- [36,75, 76,55, 72,146] # P4/16- [142,110, 192,243, 459,401] # P5/32# yolov7 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [32, 3, 1]], # 0[-1, 1, Conv, [64, 3, 2]], # 1-P1/2[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [128, 3, 2]], # 3-P2/4[-1, 1, Conv, [64, 1, 1]],[-2, 1, Conv, [64, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 11[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3], 1, Concat, [1]], # 16-P3/8[-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]], # 24[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3], 1, Concat, [1]], # 29-P4/16[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [1024, 1, 1]], # 37[-1, 1, MP, []],[-1, 1, Conv, [512, 1, 1]],[-3, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [512, 3, 2]],[[-1, -3], 1, Concat, [1]], # 42-P5/32[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [1024, 1, 1]], # 50]# yolov7 head
head:[[-1, 1, SPPCSPC, [512]], # 51[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[37, 1, Conv, [256, 1, 1]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 63[-1, 1, Conv, [128, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[24, 1, Conv, [128, 1, 1]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]], # 75[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3, 63], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 88[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3, 51], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],[-2, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]], # 101[-1,1,space_to_depth,[1]], # 2 -P2/4[-1, 1, Conv, [512, 1, 1]], # 103[75, 1, RepConv, [256, 3, 1]],[88, 1, RepConv, [512, 3, 1]],[103, 1, RepConv, [1024, 3, 1]],[[104,105,106], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)]
总结
以上只是·简单添加了一层spd,需要添加多层spd-con可以直接修改yolov7的yaml配置文件,不需要修改其他。
相关文章:

【yolo系列:yolov7训练添加spd-conv】
系列文章目录 yolov7训练添加spd-conv 文章目录 系列文章目录一、spd-conv是什么?二、使用步骤1.第一步:先在models/common.py加上2.第二步:models/yolo.py加上2.第三步:修改yolov7的yaml文件 总结 提示:以下是本篇文…...

面向对象设计-UML六种箭头含义
目录 UML概述UML语义UML表示法 六种常用关系标识方法泛化实现依赖关联聚合组合 本文参考文章 https://blog.csdn.net/qq_25091281/article/details/123801862 UML概述 UML (Unified Modeling Language)为面向对象软件设计提供统一的、标准的、可视化的建模语言。适用于描述以…...

一本没有任何数学公式的自然语言处理入门书
ChatGPT 时代来了,AI 从旧时王谢堂前燕,飞入寻常百姓家。越来越多非 AI 领域 的软件开发者涌进 NLP(自然语言处理)领域。在这个快速发展的时代,如果这些软件开发 者要像读书那样先读 4 年本科、2 年硕士、3 年博士才能搞 AI,风口早…...
【数据结构C/C++】多维数组的原理、访问方式以及作用
文章目录 什么是多维数组?代码讲解使用方式为什么指针遍历的方式是这样子的?(助你理解指针的含义)使用场景408考研各数据结构C/C代码(Continually updating) 什么是多维数组? 在C语言中&#x…...

2023年中国烹饪机器人市场发展概况分析:整体规模较小,市场仍处于培育期[图]
烹饪机器人仍属于家用电器范畴,是烹饪小家电的进一步细分,它是烹饪小家电、人工智能和服务机器在厨房领域的融合。烹饪机器人是一种智能化厨房设备,可以根据预设的程序实现自动翻炒和烹饪,是多功能料理机和炒菜机结合的产物。 烹…...

Android原生实现控件选择背景变色方案(API28及以上)
Android控件点击/选择后控件背景变色的实现方式有很多种,例如使用selector的xml文件实现。这里介绍一下另一种Android原生的点击/选择实现方案(API28及以上),也就是ColorStateListDrawable。 ColorStateListDrawable是一个可根据不…...

为什么要学C语言及C语言存在的意义
为什么要学C语言及C语言存在的意义 汇编生C,C生万物。linus说自己最喜欢的语言就是C语言,因为看到写出的代码就能想到对应的汇编码。一方面说明C语言足够简洁,没有像C中一样的复杂概念封装,另一方面也说明C语言足够的底层…...

数据结构——空间复杂度
空间复杂度,与算法运行时所需的内存空间有关。 默认问题规模为n。 举例案例,具体分析。 1.全是普通变量 2.一维数组 3.二维数组 4.递归--变量 不递归的时候空间复杂度是O(1),递归的话递归n次,乘以n,所以空间复杂度…...

uniapp:swiper-demo效果
单元格轮播 <swiper class"swiper1" :circular"true" :autoplay"true" interval"3000" previous-margin"195rpx" next-margin"195rpx"><swiper-item v-for"(item,index) in 5" :key"inde…...

Graphviz 作图工具
选择 Graphviz 作为作图工具,主要是想通过代码创建图标,按照 Graphviz 的代码规范就可以生成 svg 的图片。当然,这样的工具也有很多,有些 markdown 编辑器也做了集成,比如: flowchart.jsMermaid 了解 Gra…...

vue、vuex状态管理、vuex的核心概念state状态
每一个 Vuex 应用的核心就是 store(仓库)。“store”基本上就是一个容器,它包含着你的应用中大部分的状态 (state)。Vuex 和单纯的全局对象有以下两点不同: Vuex 的状态存储是响应式的。当 Vue 组件从 store 中读取状态的时候&…...

【QT】Qt Application Manager启动应用源码分析
Qt Application Manager启动应用源码分析 Qt Application Manager(以下简称QTAM)是QT推出的一款应用管理程序,可以把它简单理解成Android的LauncherSystemUI。但是,QTAM又集成了Wayland功能,并且自身实现了一套Compos…...

MyBatisPlus(十)判空查询
说明 判空查询,对应SQL语句中的 IS NULL语句,查询对应字段为 NULL 的数据。 isNull /*** 查询用户列表, 查询条件:电子邮箱为 null 。*/Testvoid isNull() {LambdaQueryWrapper<User> wrapper new LambdaQueryWrapper<…...
AIGC(生成式AI)试用 8 -- 曾经的难题
长假,远离电脑、远离手机、远离社交。 阴雨连绵,望着窗外发呆,AIGC为何物?有什么问题要问AIGC?AIGC可以代替我来发呆,还是可是为我空出时间发呆? 如果可以替代我发呆,要我何…...

文化主题公园旅游景点3d全景VR交互体验加深了他们对历史文化的认知和印象
如今,沉浸式体验被广泛应用于文旅行业,尤其是在旅游演艺活动中。在许多城市,沉浸式旅游演艺活动已成为游客“必打卡”项目之一。因其独特体验和强互动性,这类演艺活动不仅吸引了外地游客,也吸引了本地观众。 随着信息化…...

京东数据分析平台:2023年8月京东奶粉行业品牌销售排行榜
鲸参谋监测的京东平台8月份奶粉市场销售数据已出炉! 鲸参谋数据显示,8月份京东平台上奶粉的销售量将近700万件,环比增长约15%,同比则下滑约19%;销售额将近23亿元,环比增长约4%,同比则下滑约3%。…...

Java 21:虚拟线程介绍
Java 21 版本更新中最重要的功能之一就是虚拟线程 (JEP 444)。这些轻量级线程减少了编写、维护和观察高吞吐量并发应用程序所需的工作量。 正如我的许多其他文章一样,在推出新功能之前,让我们先看看 Java 21 版本更新前的现状,以便更好地了解…...

Redis-缓存穿透,缓存击穿,缓存雪崩
缓存穿透,缓存击穿,缓存雪崩 缓存穿透处理方案解决方案1 缓存空数据解决方案2 布隆过滤器 缓存击穿处理方案解决方案 1 互斥锁解决方案2 逻辑过期 缓存雪崩处理方案解决方案 1 给不同的key的过期时间设置添加一个随机值,降低同一个时段大量ke…...

如何使用Docker实现分布式Web自动化!
01、前言 顺着docker的发展,很多测试的同学也已经在测试工作上使用docker作为环境基础去进行一些自动化测试,这篇文章主要讲述在docker中使用浏览器进行自动化测试如果可以实现可视化,同时可以对浏览器进行相关的操作。 02、开篇 首先我们…...

从零开始:制作出色的产品原型图的详细教程
在设计产品的初始版本或模型时,产品原型起着非常重要的作用,可以帮助设计师和团队更好地了解产品需求和用户需求,优化和改进设计,确保设计最终满足用户的需求和期望。如果你不知道如何绘制产品原型图,绘制产品原型图的…...

TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...