sheng的学习笔记-【中文】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第二周测验
课程2_第2周_测验题
目录:目录
第一题
1.当输入从第8个mini-batch的第7个的例子的时候,你会用哪种符号表示第3层的激活?
A. 【 】 a [ 3 ] { 8 } ( 7 ) a^{[3]\{8\}(7)} a[3]{8}(7)
B. 【 】 a [ 8 ] { 7 } ( 3 ) a^{[8]\{7\}(3)} a[8]{7}(3)
C. 【 】 a [ 8 ] { 3 } ( 7 ) a^{[8]\{3\}(7)} a[8]{3}(7)
D. 【 】 a [ 3 ] { 7 } ( 8 ) a^{[3]\{7\}(8)} a[3]{7}(8)
答案:
A.【 √ 】 a [ 3 ] { 8 } ( 7 ) a^{[3]\{8\}(7)} a[3]{8}(7)
第二题
2.关于mini-batch的说法哪个是正确的?
A. 【 】mini-batch迭代一次(计算1个mini-batch),要比批量梯度下降迭代一次快
B. 【 】用mini-batch训练完整个数据集一次,要比批量梯度下降训练完整个数据集一次快
C. 【 】在不同的mini-batch下,不需要显式地进行循环,就可以实现mini-batch梯度下降,从而使算法同时处理所有的数据(矢量化)
答案:
A.【 √ 】mini-batch迭代一次(计算1个mini-batch),要比批量梯度下降迭代一次快
第三题
3.为什么最好的mini-batch的大小通常不是1也不是m,而是介于两者之间?
A. 【 】如果mini-batch的大小是1,那么在你取得进展前,你需要遍历整个训练集
B. 【 】如果mini-batch的大小是m,就会变成批量梯度下降。在你取得进展前,你需要遍历整个训练集
C. 【 】如果mini-batch的大小是1,那么你将失去mini-batch将数据矢量化带来的的好处
D. 【 】如果mini-batch的大小是m,就会变成随机梯度下降,而这样做经常会比mini-batch慢
答案:
B.【 √ 】如果mini-batch的大小是m,就会变成批量梯度下降。在你取得进展前,你需要遍历整个训练集
C.【 √ 】如果mini-batch的大小是1,那么你将失去mini-batch将数据矢量化带来的的好处
第四题
4.如果你的模型的成本随着迭代次数的增加,绘制出来的图如下,那么:

A. 【 】如果你正在使用mini-batch梯度下降,那可能有问题;而如果你在使用批量梯度下降,那是合理的。
B. 【 】如果你正在使用mini-batch梯度下降,那看上去是合理的;而如果你在使用批量梯度下降,那可能有问题。
C. 【 】无论你在使用mini-batch还是批量梯度下降,看上去都是合理的。
D. 【 】无论你在使用mini-batch还是批量梯度下降,都可能有问题。
答案:
B.【 √ 】如果你正在使用mini-batch梯度下降,那看上去是合理的;而如果你在使用批量梯度下降,那可能有问题。
第五题
5.假设一月的前三天卡萨布兰卡的气温是一样的:
- 一月第一天: θ 1 = 10 \theta_1 = 10 θ1=10
- 一月第二天: θ 2 = 10 \theta_2 = 10 θ2=10
假设您使用 β = 0.5 \beta = 0.5 β=0.5的指数加权平均来跟踪温度: v 0 = 0 , v t = β v t − 1 + ( 1 − β ) θ t v_0=0,v_t=\beta v_{t-1}+(1-\beta)\theta_t v0=0,vt=βvt−1+(1−β)θt。如果 v 2 v_2 v2是在没有偏差修正的情况下计算第2天后的值,并且 v 2 c o r r e c t e d v_2^{corrected} v2corrected是您使用偏差修正计算的值。 这些下面的值是正确的是?
A. 【 】 v 2 = 10 , v 2 c o r r e c t e d = 10 v_2=10,v_2^{corrected}=10 v2=10,v2corrected=10
B. 【 】 v 2 = 10 , v 2 c o r r e c t e d = 7.5 v_2=10,v_2^{corrected}=7.5 v2=10,v2corrected=7.5
C. 【 】 v 2 = 7.5 , v 2 c o r r e c t e d = 7.5 v_2=7.5,v_2^{corrected}=7.5 v2=7.5,v2corrected=7.5
D. 【 】 v 2 = 7.5 , v 2 c o r r e c t e d = 10 v_2=7.5,v_2^{corrected}=10 v2=7.5,v2corrected=10
答案:
D.【 √ 】 v 2 = 7.5 , v 2 c o r r e c t e d = 10 v_2=7.5,v_2^{corrected}=10 v2=7.5,v2corrected=10
第六题
6.下面哪一个不是比较好的学习率衰减方法?
A. 【 】 α = 1 1 + 2 ∗ t α 0 \alpha = \frac{1}{1+2*t}\alpha_0 α=1+2∗t1α0
B. 【 】 α = 1 t α 0 \alpha=\frac{1}{\sqrt{t}}\alpha_0 α=t1α0
C. 【 】 α = 0.9 5 t α 0 \alpha=0.95^t\alpha_0 α=0.95tα0
D. 【 】 α = e t α 0 \alpha=e^t\alpha_0 α=etα0
答案:
D.【 √ 】 α = e t α 0 \alpha=e^t\alpha_0 α=etα0
第七题
7.您在伦敦温度数据集上使用指数加权平均, 使用以下公式来追踪温度: v t = β v t − 1 + ( 1 − β ) θ t v_t=\beta v_{t-1}+(1-\beta)\theta_t vt=βvt−1+(1−β)θt。下图中红线使用的是 β = 0.9 \beta=0.9 β=0.9来计算的。当你改变 β \beta β时,你的红色曲线会怎样变化?(选出所有正确项)

A. 【 】减小 β \beta β,红色线会略微右移
B. 【 】增加 β \beta β,红色线会略微右移
C. 【 】减小 β \beta β,红线会更加震荡
D. 【 】增加 β \beta β,红线会更加震荡
答案:
B.【 √ 】增加 β \beta β,红色线会略微右移
C.【 √ 】减小 β \beta β,红线会更加震荡
第八题
8.下图中的曲线是由:梯度下降,动量梯度下降( β = 0.5 \beta=0.5 β=0.5)和动量梯度下降( β = 0.9 \beta=0.9 β=0.9)。哪条曲线对应哪种算法?

A. 【 】(1)是梯度下降;(2)是动量梯度下降( β = 0.9 \beta=0.9 β=0.9);(3)是动量梯度下降( β = 0.5 \beta=0.5 β=0.5)
B. 【 】(1)是梯度下降;(2)是动量梯度下降( β = 0.5 \beta=0.5 β=0.5);(3)是动量梯度下降( β = 0.9 \beta=0.9 β=0.9)
C. 【 】(1)是动量梯度下降( β = 0.5 \beta=0.5 β=0.5);(2)是动量梯度下降( β = 0.9 \beta=0.9 β=0.9);(3)是梯度下降
D. 【 】(1)是动量梯度下降( β = 0.5 \beta=0.5 β=0.5);(2)是梯度下降;(3)是动量梯度下降($\beta=0.9
$)
答案:
B.【 √ 】(1)是梯度下降;(2)是动量梯度下降( β = 0.5 \beta=0.5 β=0.5);(3)是动量梯度下降( β = 0.9 \beta=0.9 β=0.9)
第九题
9.假设在一个深度学习网络中,批量梯度下降花费了大量时间时来找到一组参数值,使成本函数 ( J ( W [ 1 ] , b [ 1 ] , … , W [ L ] , b [ L ] ) (J(W^{[1]},b^{[1]},…,W^{[L]},b^{[L]}) (J(W[1],b[1],…,W[L],b[L])小。以下哪些方法可以帮助找到 J J J值较小的参数值?
A. 【 】令所有权重值初始化为0
B. 【 】尝试调整学习率
C. 【 】尝试mini-batch梯度下降
D. 【 】尝试对权重进行更好的随机初始化
E. 【 】尝试使用 Adam 算法
答案:
B.【 √ 】尝试调整学习率
C.【 √ 】尝试mini-batch梯度下降
D.【 √ 】尝试对权重进行更好的随机初始化
E.【 √ 】尝试使用 Adam 算法
第十题
10.关于Adam算法,下列哪一个陈述是错误的?
A. 【 】Adam结合了Rmsprop和动量的优点
B. 【 】Adam中的学习率超参数 α \alpha α通常需要调整
C. 【 】我们经常使用超参数的“默认”值 β 1 = 0 , 9 , β 2 = 0.999 , ϵ = 1 0 − 8 \beta_1=0,9,\beta_2=0.999,\epsilon=10^{-8} β1=0,9,β2=0.999,ϵ=10−8
D. 【 】Adam应该用于批梯度计算,而不是用于mini-batch
答案:
D.【 √ 】Adam应该用于批梯度计算,而不是用于mini-batch
相关文章:
sheng的学习笔记-【中文】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第二周测验
课程2_第2周_测验题 目录:目录 第一题 1.当输入从第8个mini-batch的第7个的例子的时候,你会用哪种符号表示第3层的激活? A. 【 】 a [ 3 ] { 8 } ( 7 ) a^{[3]\{8\}(7)} a[3]{8}(7) B. 【 】 a [ 8 ] { 7 } ( 3 ) a^{[8]\{7\}(3)} a…...
Nacos 监控手册
Nacos 0.8.0版本完善了监控系统,支持通过暴露metrics数据接入第三方监控系统监控Nacos运行状态,目前支持prometheus、elastic search和influxdb,下面结合prometheus和grafana如何监控Nacos。与elastic search和influxdb结合可自己查找相关资料…...
项目需求分析5大常见问题及解决方案
需求分析过程中,往往容易导致需求不准确和不完整,引起需求频繁变更,导致项目进度延误和成本增加;而需求分析的误解问题,导致交付产品无法满足客户期待,降低用户满意度和资源浪费。 那么在需求分析中&#x…...
C#学习系列相关之多线程(四)----async和await的用法
一、async、await用法的作用 async用法主要是用来作为修饰符将方法作为异步方法使用,await关键字只用作为在异步方法才能使用,也就是只有当方法有async修饰后,才能在方法中使用await,await后跟Task新的任务启动。(awai…...
极智AI | 大模型优化之KV Cache
欢迎关注我的公众号 [极智视界],获取我的更多经验分享 大家好,我是极智视界,本文来介绍一下 大模型优化之KV Cache。 邀您加入我的知识星球「极智视界」,星球内有超多好玩的项目实战源码下载,链接:https://t.zsxq.com/0aiNxERDq 在大模型的优化中经常会听到的一个技术叫…...
Android 使用 registerForActivityResult() 打开系统相册或相机获取图像
一、简介 当使用了 AndroidX 后,发现 startActivityForResult() 标记为过时了,而是推荐我们使用 registerForActivityResult() 函数。 registerForActivityResult() 函数是 Android 中用于启动 Activity 结果回调的新方式。这个函数的目的是简化在 Act…...
如何制作网页 ico
1. 制作 icon 可以通过 https://www.iconfont.cn/collections/detail?spma313x.7781069.1998910419.de12df413&cid13720 或者自己在 PPT 制作,然后截图导出png 文件。 2. 转换为 ico 文件 使用:https://www.bitbug.net/ 上传并且转换成自己要的…...
golang gorm 增删改查以及使用原生SQL(以操作mysql为例)
gorm mysql增删改查 model定义 package _caseimport "gorm.io/gorm"func init() {DB.Migrator().AutoMigrate(Teacher{}, Course{}) } type Roles []stringtype Teacher struct {gorm.ModelName string gorm:"size:256"Email string gorm:&q…...
代码随想录 单调栈part2
503. 下一个更大元素 II 给定一个循环数组 nums ( nums[nums.length - 1] 的下一个元素是 nums[0] ),返回 nums 中每个元素的 下一个更大元素 。 数字 x 的 下一个更大的元素 是按数组遍历顺序,这个数字之后的第一个比它更大的数…...
详解利用高斯混合模型拆解多模态分布 + 精美可视化
文章目录 一、前言二、主要内容三、总结🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 一、前言 本文旨在介绍如何利用高斯混合模型(Gaussian Mixture Models,简称 GMMs)将一维多模态分布拆分为多个分布。作为统计 / / /机器学习领域常用的概率模型...
排序算法之【归并排序】
📙作者简介: 清水加冰,目前大二在读,正在学习C/C、Python、操作系统、数据库等。 📘相关专栏:C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 👍…...
Qt中QTimer定时器的用法
Qt中提供了两种定时器的方式一种是使用Qt中的事件处理函数,另一种就是Qt中的定时器类QTimer。 使用QTimer类,需要创建一个QTimer类对象,然后调用其start()方法开启定时器,此后QTimer对象就会周期性的发出timeout()信号。 1.QTimer…...
vue-组件定义注册使用
vue组件使用的步骤 定义组件注册组件使用组件 定义组件 Vue.extend(options) 其中options和new Vue(options)出入的options对象几乎一样,但是也有不同。 创建 el不用写—最终所有组件需要经过一个vm的管理,由vm的el决定服务哪个容器。 data必须写成函…...
斑馬打印機打印中文
创建项目 首先說一下,本文章是借鉴了其他大佬的文章,然后我记录一下的文章。 首先创建好一个.net framework的winform项目。 这里面主要用到两个库文件: Fnthex32.dll、LabelPrint.dll。 Fnthex32这个有8位参数和9位参数的,我这…...
(一)Apache log4net™ 手册 - 介绍
0、相关概念 Log4j 几乎每个大型应用程序都包含自己的日志记录或跟踪 API。根据这一规则,E.U. SEMPER 🌹项目决定编写自己的跟踪 API。那是在 1996 年初。经过无数次的增强、几个化身和大量的工作,API 已经发展成为 log4j —— 一个流行的 Ja…...
基于Java的民宿管理系统设计与实现(源码+lw+部署文档+讲解等)(民宿预约、民宿预订、民宿管理、酒店预约通用)
文章目录 前言具体实现截图论文参考详细视频演示代码参考源码获取 前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技…...
039:mapboxGL更换地图上的鼠标样式
第039个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+mapbox中更换地图上的鼠标的样式。 直接复制下面的 vue+mapbox源代码,操作2分钟即可运行实现效果 文章目录 示例效果配置方式示例源代码(共74行)相关API参考:专栏目标示例效果 配置方式 1)查看基础设置:htt…...
【云原生】K8S对外服务之Ingress
目录 一、Ingress 简介1.1Ingress 组成1.3Ingress-Nginx 工作原理 二、部署 nginx-ingress-controller2.1部署ingress-controller Pod及相关资源2.2ingress 暴露服务的方式2.3 采用方式二:DaemonSetHostNetworknodeSelector 三、采用方式二:DeploymentNo…...
分布式锁如何实现
分布式是现在的比较主流的技术,常常和微服务一起出现。那么对于多个实例之间,如何证分布式系统中多个进程或线程同步访问共享资源呢?我们其实一想到的就是锁,我们在java里边有 synchronized, 在python里有lock,但是这个…...
Mysql存储-EAV模式
Mysql存储-EAV模式 最近又又又搞一点新东西,要整合不同业务进行存储和查询,一波学习过后总结了一下可扩展性MAX的eav模式存储。 在eav这里的数据结构设计尤为关键,需要充分考虑你需要使用的字段、使用场景,当数据结构设计完成后便…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...
消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
