当前位置: 首页 > news >正文

LeetCode动态规划经典题目(九):子序列、子数组问题

目录

31. LeetCode674. 最长连续递增序列

32. LeetCode18. 最长重复子数组

33. LeetCode1143. 最长公共子序列

34. LeetCode1035. 不相交的线

35. LeetCode53. 最大子数组和

36. LeetCode392.判断子序列

37. LeetCode115. 不同的子序列

38. LeetCode583. 两个字符串的删除操作

39. LeetCode72. 编辑距离


思路:
1.dp含义:
dp[i]:集合nums从下标0到下标i并且以nums[i]结尾的最长递增子序列长度
(1)为什么能够以nums[i]结尾?因为每个递增子序列必定是以集合nums中的其中一个元素结尾。
(2)为什么一定要以nums[i]结尾?因为在递推时,我们需要与前一个递增子序列作比较,而只有知道尾元素大小才能有效地比较。
2.转移方程:
if(nums[j]<nums[i])dp[i]=max(dp[i],dp[j]+1);//j:0~(i-1)
3.初始化dp:
dp[0]=1;方法一:动态规划
class Solution {
public:int lengthOfLIS(vector<int>& nums) {if(nums.size()<=1)return nums.size();//dp[i]:集合nums从下标0到下标i并且以nums[i]结尾的最长递增子序列长度vector<int>dp(nums.size(),1);//基础长度是1int res=0;//完善dpfor(int i=1;i<nums.size();i++){for(int j=0;j<i;j++){if(nums[j]<nums[i])dp[i]=max(dp[i],dp[j]+1);//保留以nums[i]结尾最大长度}res=max(dp[i],res);//保留整体集合最长递增子序列长度}return res;}
};
时间复杂度:O(n^2)
空间复杂度:O(n)方法二:贪心+动态规划
ends[i]:所有长度为i+1的递增子序列的尾元素最小值,且ends[i]必定小于ends[i+1]
为什么ends[i]<ends[i+1]?设以ends[i]、ends[i+1]结尾的递增子序列分别为subSequence1(长度为i+1),subSequence2(长度为i+2),
假设ends[i]>ends[i+1],即subSequence1[i]>subSequence2[i+1],由于递增,
所以subSequence1[i]>subSequence2[i+1]>subSequence2[i] => subSequence1[i]>subSequence2[i]
则 ends[i]=subSequence2[i],有矛盾,所以假设不成立。class Solution {
public:int lengthOfLIS(vector<int>& nums) {if(nums.size()<=1)return nums.size();//ends[i]:所有长度为i+1的递增子序列的尾元素最小值,且ends[i]必定小于ends[i+1]vector<int>ends(nums.size());ends[0]=nums[0];int right=0;for(int i=1;i<nums.size();i++){//长度最长的递增子序列尾元素小于nums[i],有效区域右移,并记录最小尾元素if(ends[right]<nums[i]){ends[++right]=nums[i];}else{int l=0;while(l<right&&ends[l]<nums[i]){//找到ends最左边比nums[i]大的尾元素l++;}//退出循环有两种情况,只有第二种情况才能赋值if(ends[l]>nums[i])ends[l]=nums[i];}}//ends[right]是"长度为right+1"的递增子序列的最小尾元素return right+1;}
};
时间复杂度:O(n*logn)
空间复杂度:O(n)

31. LeetCode674. 最长连续递增序列

1.dp[i]:以nums[i]结尾的连续递增序列长度
2.if(nums[i]>nums[i-1])dp[i]=dp[i-1]+1:因为是连续的,所以只需要考虑nums[i]是否比nums[i-1]大就行了(贪心)
3.初始化dp:全都初始化成1,因为至少包含nums[i]动态规划:
class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if(nums.size()<=1)return nums.size();//dp[i]:以nums[i]结尾的连续递增序列长度vector<int>dp(nums.size(),1);int res=INT_MIN;//完善dpfor(int i=1;i<nums.size();i++){if(nums[i]>nums[i-1])dp[i]=dp[i-1]+1;res=max(res,dp[i]);//记录最长连续递增序列长度}return res;}
};贪心:
class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if(nums.size()<=1)return nums.size();int count=1;//记录过程中个递增序列长度int res=INT_MIN;//记录最长递增序列长度for(int i=1;i<nums.size();i++){if(nums[i]>nums[i-1])count++;else count=1;//重新取递增序列头元素res=max(res,count);}return res;}
};与前一题的区别是:
本题dp[i]状态之和dp[i-1]有关,因为是连续的。
而前一题因为是不连续的,所以dp[i]状态和dp[0]/dp[1]/.../dp[i-1]都有关系

32. LeetCode18. 最长重复子数组

1.dp[i][j]:以nums1[i]结尾的nums1和以nums2[j]结尾的nums2的重复子数组长度
2.if(nums1[i]==nums[j])dp[i][j]=dp[i-1][j-1]+1;else dp[i][j]=0;
3.初始化dp普通动态规划二维表:
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {//长度是1,看唯一元素是否相同if(nums1.size()==1&&nums2.size()==1)return nums1[0]==nums2[0]?1:0;//dp[i][j]:以nums1[i]结尾的nums1和以nums2[j]结尾的nums2的重复子数组长度vector<vector<int>>dp(nums1.size(),vector<int>(nums2.size()));//记录最长重复子数组长度int res=0;//初始化dpfor(int i=0;i<nums1.size();i++){if(nums1[i]==nums2[0])dp[i][0]=1;res=max(res,dp[i][0]);}for(int j=0;j<nums2.size();j++){if(nums2[j]==nums1[0])dp[0][j]=1;res=max(res,dp[0][j]);}//完善dpfor(int i=1;i<nums1.size();i++){for(int j=1;j<nums2.size();j++){if(nums1[i]==nums2[j]){dp[i][j]=dp[i-1][j-1]+1;}else{//如果nums1[i]!=nums2[j],那必不可能重复,因为子数组一定要包含nums1[i]和nums2[j]dp[i][j]=0;}res=max(res,dp[i][j]);}}return res;}
};观察上方代码,发现不仅要额外判断数组长度为1时的情况,还要在初始化dp时更新res,代码略显臃肿。
再看转移方程,我们可以多一行一列,基础值为0,但也因此有额外空间开销
1.dp[i][j]:以nums1[i-1]结尾的nums1和以nums2[j-1]结尾的nums2的重复子数组长度
2.if(nums1[i]==nums[j])dp[i][j]=dp[i-1][j-1]+1;else dp[i][j]=0;
3.初始化dp
改良动态规划二维表(代码行数更少):
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {//dp[i][j]:以nums1[i-1]结尾的nums1和以nums2[j-1]结尾的nums2的重复子数组长度vector<vector<int>>dp(nums1.size()+1,vector<int>(nums2.size()+1));//记录最长重复子数组长度int res=0;//完善dpfor(int i=1;i<nums1.size()+1;i++){for(int j=1;j<nums2.size()+1;j++){if(nums1[i-1]==nums2[j-1])dp[i][j]=dp[i-1][j-1]+1;else dp[i][j]=0;res=max(res,dp[i][j]);}}return res;}
};滚动数组:
观察转移方程,dp是一行一行更新,并且是从左到右
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<int>dp(nums2.size()+1);int res=0;for(int i=1;i<nums1.size()+1;i++){for(int j=nums2.size();j>=1;j--){//滚动数组应当优先更新那些不用来递推其他dp值的if(nums1[i-1]==nums2[j-1])dp[j]=dp[j-1]+1;else dp[j]=0;res=max(res,dp[j]);}}return res;}
};总结:
实现出动态规划二维表后,观察转移方程,看是否能够利用滚动数组实现,一般来说一行一行遍历的都可以转成一维数组。

33. LeetCode1143. 最长公共子序列

1.dp[i][j]:text1[0,i-1]和text2[0,j-1]的最长公共子序列长度
2.if(text[i]==text[j])dp[i][j]=dp[i-1][j-1]+1;else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);class Solution {
public:int longestCommonSubsequence(string text1, string text2) {//dp[i][j]:text1[0,i-1]和text2[0,j-1]的最长公共子序列长度vector<vector<int>>dp(text1.length()+1,vector<int>(text2.length()+1));//完善dpfor(int i=1;i<text1.length()+1;i++){for(int j=1;j<text2.length()+1;j++){if(text1[i-1]==text2[j-1]){dp[i][j]=dp[i-1][j-1]+1;}else{//text1[i-1]!=text2[j-1]//1.text1[i-2]和text[j-1]比较//2.text1[i-1]和text[j-2]比较//上述两种情况已经涵盖了所有可能性:text1[i-2]子序列涵盖了text1[i-3]所有子序列//text1[i-1]和text2[j-1]是新出现的字符,所以必须带着dp[i][j]=max(dp[i-1][j],dp[i][j-1]);//记忆化搜索}}}return dp[text1.length()][text2.length()];}
};

34. LeetCode1035. 不相交的线

思路:
线只要在连接nums1和nums2的元素时按照相对同样的顺序就不会相交,所以本质上是求nums1和nums2最长公共子序列长度。1.dp[i][j]:nums1[0,i-1]和nums2[0,j-1]的公共子序列长度
2.if(nums1[i-1]==nums2[j-1])dp[i][j]=dp[i-1][j-1]+1;else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);class Solution {
public:int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {//dp[i][j]:nums1[0,i-1]和nums2[0,j-1]的公共子序列长度vector<vector<int>>dp(nums1.size()+1,vector<int>(nums2.size()+1));//完善dpfor(int i=1;i<nums1.size()+1;i++){for(int j=1;j<nums2.size()+1;j++){if(nums1[i-1]==nums2[j-1])dp[i][j]=dp[i-1][j-1]+1;else dp[i][j]=max(dp[i][j-1],dp[i-1][j]);}}return dp[nums1.size()][nums2.size()];}
};

35. LeetCode53. 最大子数组和

1.dp[i]:以nums[i-1]结尾的最大子数组和
2.if(dp[i-1]>0)dp[i]=dp[i-1]+nums[i];else dp[i]=nums[i-1];class Solution {
public:int maxSubArray(vector<int>& nums) {//dp[i]:以nums[i]结尾的最大子数组和vector<int>dp(nums.size()+1);int res=INT_MIN;//完善dpfor(int i=1;i<nums.size()+1;i++){//只有前面子数组和为正,才对自己有帮助,才能够获取最大子数组和if(dp[i-1]>0)dp[i]=dp[i-1]+nums[i-1];else dp[i]=nums[i-1];res=max(res,dp[i]);}return res;}
};dp[i]只与dp[i-1]有关,与dp[i-1]前的元素都无关,所以我们只需一个值即可
class Solution {
public:int maxSubArray(vector<int>& nums) {int cur=0;int res=INT_MIN;for(int i=0;i<nums.size();i++){if(cur>=0){cur=cur+nums[i];}else{//cur<0,只会减少后续子数组和cur=nums[i];}res=max(res,cur);}return res;}
};

36. LeetCode392.判断子序列

1.dp含义:
dp[i][j]:以s[i-1]结尾的字符串s,和以t[j-1]结尾的字符串t,相同子序列长度
注意:是判断s是否为t的子序列,所以t.length()>=s.length();s一定要包含s[i-1],t不一定要包含t[j-1]2.转移方程:
只需要考虑删除字符串t的元素即可
if(s[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+1;//t中新出现的字符能够和s[i-1]匹配
else dp[i][j]=dp[i][j-1];//无法匹配,t删除元素,继续匹配,然前一个字符去处理3.初始化dp:
//初始化二维数组dp时就已经完成了
dp[0][j]=0;
dp[i][0]=0;4.遍历顺序:
dp值从左上角递推而得
i:从上到下
j:从左至右class Solution {
public:bool isSubsequence(string s, string t) {//dp[i][j]:以s[i-1]结尾的字符串s,和以t[j-1]结尾的字符串t,相同子序列长度vector<vector<int>>dp(s.length()+1,vector<int>(t.length()+1));//完善dpfor(int i=1;i<s.length()+1;i++){for(int j=i;j<t.length()+1;j++){if(s[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+1;else dp[i][j]=dp[i][j-1];}}return dp[s.length()][t.length()]==s.length();}
};双指针法:
创建两个索引指针sIndex、tIndex分别指向s和t,如果t[tIndex]==s[sIndex],那么两根指针同时后移;否则tIndex后移,直到sIndex扫完s
,恰好也符合子序列顺序。
class Solution {
public:bool isSubsequence(string s, string t) {int sIndex=0;//指向s字符的指针int tIndex=0;//指向t字符的指针while(sIndex<s.length()&&tIndex<t.length()){if(s[sIndex]==t[tIndex]){sIndex++;tIndex++;}else{tIndex++;}}//sIndex扫过的区域都是在t中以同样的顺序出现过的return sIndex==s.length();}
};

37. LeetCode115. 不同的子序列

解读题意:从s中可以找出几个子序列恰好和t相同。s如何删除元素可以变成t
1.dp含义:
dp[i][j]:以s[i-1]结尾的字符串s中,以t[j-1]结尾的字符串t个数2.转移方程:
只有出现新字符时(下一轮循环)才会有未考虑的情况,对于新出现字符只有两种考虑(使用或不使用)
if(s[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+dp[i-1][j];//s[i-1]可使用也可不使用(模拟删除),两种情况总和。t无法删除元素
else dp[i][j]=dp[i-1][j];//不匹配,不用考虑s[i-1]3.初始化dp:
dp[0][j]=0;
dp[i][0]=1;
dp[0][0]=1;4.遍历顺序:
i:从上到下
j:从左到右class Solution {
public:int numDistinct(string s, string t) {//dp[i][j]:以s[i-1]结尾的字符串s中,以j[i-1]结尾的字符串t个数vector<vector<uint64_t>>dp(s.length()+1,vector<uint64_t>(t.length()+1));//初始化dpfor(int i=0;i<s.length()+1;i++){dp[i][0]=1;}for(int j=1;j<t.length()+1;j++){dp[0][j]=0;}//完善dpfor(int i=1;i<s.length()+1;i++){for(int j=1;j<t.length()+1;j++){if(s[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+dp[i-1][j];else dp[i][j]=dp[i-1][j];}}return dp[s.length()][t.length()];}
};

38. LeetCode583. 两个字符串的删除操作

思路:
二维数组,因为需要操作两个字符串1.dp含义:
dp[i][j]:让以word1[i-1]结尾的字符串word1和以word2[j-1]结尾的字符串word2相同的最少操作数
2.转移方程:
对于新字符word1[i-1]和word2[j-1]只有相同和不相同两种情况
if(word1[i-1]==word[j-1])dp[i][j]=dp[i-1][j-1];//保留这两字符可以减少两步删除操作
else dp[i][j]=min(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+2);//二者选一个删除或都删除,取最小操作数
3.遍历顺序:
i:从上到下
j:从左到右
4.初始化dp:
dp[0][j]=j;//word1是空字符,word2必须删掉所有字符才能相同
dp[i][0]=i;class Solution {
public:int minDistance(string word1, string word2) {//dp[i][j]:让以word1[i-1]结尾的字符串word1和以word2[j-1]结尾的字符串word2相同的最少操作数vector<vector<int>>dp(word1.length()+1,vector<int>(word2.length()+1));//初始化dpfor(int i=0;i<=word1.length();i++){dp[i][0]=i;}for(int j=0;j<=word2.length();j++){dp[0][j]=j;}//完善dpfor(int i=1;i<=word1.length();i++){for(int j=1;j<=word2.length();j++){if(word1[i-1]==word2[j-1])dp[i][j]=dp[i-1][j-1];else dp[i][j]=min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+2));}}return dp[word1.length()][word2.length()];}
};也可以求最长公共子序列长度,然后经过计算得出结果。

39. LeetCode72. 编辑距离

思路:
虽然题目说让word1变成word2,但也可以让word2变成word1。因为删除word1的字符,等效于在word2中添加字符,所以删除操作包含了添加操作1.dp含义:
dp[i][j]:让以word1[i-1]结尾的字符串word1和以word2[j-1]结尾的字符串word2相同的最少操作数
2.转移方程:
if(word1[i-1]==word2[j-1])dp[i][j]=dp[i-1][j-1];
else{dp[i][j]=min(dp[i-1][j]+1,dp[i][j-1]+1);//删除,这二者已经包含了dp[i-1][j-1]+2dp[i][j]=min(dp[i][j],dp[i-1][j-1]+1);//替换
}
3.遍历顺序:
i:从上到下
j:从左到右
4.初始化dp:
dp[0][j]=j;
dp[i][0]=i;class Solution {
public:int minDistance(string word1, string word2) {//dp[i][j]:让以word1[i-1]结尾的字符串word1和以word2[j-1]结尾的字符串word2相同的最少操作数vector<vector<int>>dp(word1.length()+1,vector<int>(word2.length()+1));//初始化dpfor(int i=0;i<=word1.length();i++){dp[i][0]=i;}for(int j=0;j<=word2.length();j++){dp[0][j]=j;}//完善dpfor(int i=1;i<=word1.length();i++){for(int j=1;j<=word2.length();j++){if(word1[i-1]==word2[j-1])dp[i][j]=dp[i-1][j-1];else{dp[i][j]=min(dp[i-1][j]+1,dp[i][j-1]+1);//删除,这二者已经包含了dp[i-1][j-1]+2dp[i][j]=min(dp[i][j],dp[i-1][j-1]+1);//替换}}}return dp[word1.length()][word2.length()];}
};

相关文章:

LeetCode动态规划经典题目(九):子序列、子数组问题

目录 31. LeetCode674. 最长连续递增序列 32. LeetCode18. 最长重复子数组 33. LeetCode1143. 最长公共子序列 34. LeetCode1035. 不相交的线 35. LeetCode53. 最大子数组和 36. LeetCode392.判断子序列 37. LeetCode115. 不同的子序列 38. LeetCode583. 两个字符串的删…...

如何利用有限的数据发表更多的SCI论文?——利用ArcGIS探究环境和生态因子对水体、土壤和大气污染物的影响

SCI的写作和发表是科研人提升自身实力和实现自己价值的必要途径。“如何利用有限的数据发表更多的SCI论文&#xff1f;”是我们需要解决的关键问题。软件应用只是过程和手段&#xff0c;理解事件之间的内在逻辑和寻找事物之间的内在规律才是目的。如何利用有限的数据发表更多的…...

六【 SpringMVC框架】

一 SpringMVC框架 目录一 SpringMVC框架1.什么是MVC2.SpringMVC概述3.SpringMVC常见开发方式4.SpringMVC执行流程5.SpringMVC核心组件介绍6.快速构建Spring MVC程序✅作者简介&#xff1a;Java-小白后端开发者 &#x1f96d;公认外号&#xff1a;球场上的黑曼巴 &#x1f34e;个…...

【BBuf的CUDA笔记】八,对比学习OneFlow 和 FasterTransformer 的 Softmax Cuda实现

0x1. OneFlow/FasterTransformer SoftMax CUDA Kernel 实现学习 这篇文章主要学习了oneflow的softmax kernel实现以及Faster Transformer softmax kernel的实现&#xff0c;并以个人的角度分别解析了原理和代码实现&#xff0c;最后对性能做一个对比方便大家直观的感受到onefl…...

python 类对象的析构释放代码演示

文章目录一、类的构造函数与析构函数二、代码演示1. 引用的更迭2. 只在函数内部的类对象三、函数内部返回的类对象1. 使用全局变量 引用 函数内部的类对象一、类的构造函数与析构函数 init 函数是python 类的构造函数&#xff0c;在创建一个类对象的时候&#xff0c;就会自动调…...

Hadoop Shell常用命令

Hadoop Shell命令在管理HDFS的时候还是比较常用的&#xff0c;Hadoop Shell命令与shell命令极为相似&#xff0c;但是方便查询&#xff0c;在这里总结分享&#xff0c;大家enjoy~~ 1&#xff0c;cat 语法格式&#xff1a;hadoop fs -cat URI [URI …] 含义&#xff1a;将路径…...

Android中级——色彩处理和图像处理

色彩处理 通过色彩矩阵处理 色彩矩阵介绍 图像的RGBA可拆分为一个4行5列的矩阵和5行1列矩阵相乘 其中4行5列矩阵即为ColorMatrix&#xff0c;可通过调整ColorMatrix间接调整RGBA 第一行 abcde 决定新的 R第二行 fghij 决定新的 G第三行 klmno 决定新的 G第四行 pqrst 决定新…...

C++类和对象:类的定义、类对象的存储、this指针

目录 一. 对于面向过程和面向对象的认识 二. 类 2.1 struct关键字定义类 2.1.1 C语言中的struct关键字 2.1.2 C中的struct关键字 2.2 class关键字 2.1 使用class关键字定义类 三. 类的访问限定及封装 3.1 类的访问权限及访问限定符 3.1.1 访问权限 3.1.2 访问限定…...

代码随想录算法训练营第三十九天 | 62.不同路径,63. 不同路径 II

一、参考资料不同路径https://programmercarl.com/0062.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84.html 视频讲解&#xff1a;https://www.bilibili.com/video/BV1ve4y1x7Eu不同路径 IIhttps://programmercarl.com/0063.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84II.htmlhttps://progr…...

数据库复习3

一. 简答题&#xff08;共1题&#xff0c;100分&#xff09; 1. (简答题) 存在数据库test&#xff0c;数据库中有如下表&#xff1a; 1.学生表 Student(Sno,Sname,Sage,Ssex) --Sno 学号,Sname 学生姓名,Sage 出生年月,Ssex 学生性别 主键Sno 2.教师表 Teacher(Tno,Tname) --T…...

顺序表的增删查改

数据结构 是数据存储的方式&#xff0c;对于不同的数据我们要采用不同的数据结构。就像交通运输&#xff0c;选用什么交通工具取决于你要运输的是人还是货物&#xff0c;以及它们的数量。 顺序存储结构 包括顺序表、链表、栈和队列等。 例如腾讯QQ中的好友列表&#xff0c;…...

jupyter matplotlib中文乱码解决

中文乱码可能有两种情况 1. matplotlib里面有中文字体 2. 没有中文字体 查看是否有中文字体: # 查询当前系统所有字体 from matplotlib.font_manager import FontManager import subprocessmpl_fonts = set(f.name for f in FontManager().ttflist)print(all font list get f…...

Smtplib之发邮件模块

目录 创建Smtp对象 Smtp类中的方法 MIME MIMEBase MIMEBase MIMEMultipart MIMEApplication MIMEAudio MIMEImage MIMEText 实例 texthtml格式 发送带图片附件的邮件 发送带附件的邮件 含多种格式 SMTP模块 SMTP 简单传输协议&#xff0c;它是一组用于由源…...

Android 适配手机和平板

一、屏幕适配限定符Android 系统加载应用资源时 , 会根据当前运行应用的设备的相关属性 , 如 : 屏幕尺寸 / 屏幕像素密度 / 宽高比 / 屏幕方向 等属性 , 加载不同的屏幕适配限定符目录下的资源 ;如 : 横竖屏切换时 , res/layout-land 目录中 , 存放的是横屏布局 , res/layout-p…...

时序预测 | MATLAB实现LSTM-SVR(长短期记忆神经网络-支持向量机)时间序列预测

时序预测 | MATLAB实现LSTM-SVR(长短期记忆神经网络-支持向量机)时间序列预测 目录时序预测 | MATLAB实现LSTM-SVR(长短期记忆神经网络-支持向量机)时间序列预测效果一览基本介绍模型介绍LSTM模型SVR模型LSTM-SVR模型程序设计参考资料致谢效果一览 基本介绍 本次运行测试环境MA…...

分阶段构建golang运行环境Dockerfile镜像

在开始这项工作之前大家可以先去看一下docker官方给出关于空镜像scratch的说明&#xff0c;采用官方简单的一句话就是&#xff1a;scratch是一个明确的空图像&#xff0c;特别是对于“从头开始”构建图像。分阶段构建镜像就会用到scratch这个空镜像&#xff0c;这样的好处是可以…...

Vue-cli脚手架在做些什么(源码角度分析)

什么是Vue脚手架&#xff1f;在学习初期&#xff0c;我们的项目往往需要借助webpack、vite等打包工具配置Vue的开发环境&#xff0c;但是在真实开发中我们不可能每个项目从头来完成所有的webpack配置&#xff0c;这样显得开发的效率会大大的降低&#xff1b;所有的真实开发中&a…...

【Nginx】|入门连续剧——安装

作者&#xff1a;狮子也疯狂 专栏&#xff1a;《Nginx从入门到超神》 坚持做好每一步&#xff0c;幸运之神自然会降临在你的身上 目录一. &#x1f981; 前言Ⅰ. &#x1f407; 为啥我们要使用Nginx&#xff1f;二. &#x1f981; 搭建流程Ⅰ. &#x1f407; 环境准备Ⅱ. &…...

从0开始学python -38

Python3 面向对象-1 Python从设计之初就已经是一门面向对象的语言&#xff0c;正因为如此&#xff0c;在Python中创建一个类和对象是很容易的。本章节我们将详细介绍Python的面向对象编程。 如果你以前没有接触过面向对象的编程语言&#xff0c;那你可能需要先了解一些面向对…...

算法设计与分析期末考试复习(二)

分治法 将一个难以直接解决的大问题&#xff0c;分割成一些规模较小的相同问题&#xff0c;以便各个击破&#xff0c;分而治之。最好使子问题的规模大致相同。 分解&#xff08;Divide&#xff09;&#xff1a;将一个难以直接解决的大问题&#xff0c;分割成一些规模较小的子…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...