AM@数列极限
文章目录
- abstract
- 极限👺
- 极限的主要问题
- 数列极限
- 数列极限的定义@ ( ϵ − N ) (\epsilon-N) (ϵ−N)语言描述
- 极限表达式成立的证明
- 极限发散证明
- 常用数列极限
- 数列极限的几何意义
- 例
- 函数的极限
abstract
- 数列极限
极限👺
- 极限分为数列的极限和函数的极限
- 函数的极限又有6种极限过程:形式地记为 x → ∗ x\to{*} x→∗,其中 ∗ * ∗可能是:
- x 0 , x 0 − , x 0 + x_0,x_0^{-},x_0^{+} x0,x0−,x0+
- ∞ , − ∞ , + ∞ \infin,-\infin,+\infin ∞,−∞,+∞
极限的主要问题
- 求给定数列或函数的极限值
- 证明给定数列或函数的极限是某个值(通常用极限的定义法作证明)
数列极限
数列极限的定义@ ( ϵ − N ) (\epsilon-N) (ϵ−N)语言描述
- 若对任何的 ϵ > 0 \epsilon>0 ϵ>0,若存在 N > 0 N>0 N>0,当 n > N n>N n>N时,有 ∣ a n − A ∣ < ϵ |a_{n}-A|<\epsilon ∣an−A∣<ϵ,称 A A A为数列 { a n } \set{a_{n}} {an}的极限,记为 lim n → ∞ a n = A \lim\limits_{n\to{\infin}}{a_n}=A n→∞liman=A或记为 x n → a ( n → ∞ ) x_n\rightarrow a(n\rightarrow \infin) xn→a(n→∞),不引起混淆的情况下,还可以简写为 x n → a x_n\to{a} xn→a
- 半形式化语言描述: ∀ ε > 0 , ∃ N > 0 , \forall \varepsilon>0,\exist N>0, ∀ε>0,∃N>0, when: n > N n>N n>N,then: ∣ a n − A ∣ < ε |a_n-A|<\varepsilon ∣an−A∣<ε,记为 lim n → + ∞ a n = A \lim\limits_{n\to{+\infin}}a_{n}=A n→+∞liman=A
极限表达式成立的证明
- 证明数列极限的常用方法是用数列极限的定义证明
- 若 lim n → ∞ x n = a \lim\limits_{n\to\infin}{x_n}=a n→∞limxn=a,则 lim n → ∞ ∣ x n ∣ = ∣ a ∣ \lim\limits_{n\to\infin}{|x_n|}=|a| n→∞lim∣xn∣=∣a∣
- 由条件, ∀ ϵ > 0 \forall{\epsilon}>0 ∀ϵ>0, ∃ N > 0 \exist{N>0} ∃N>0,当 n > N n>N n>N时有 ξ = ∣ x n − a ∣ < ϵ \xi=|x_n-a|<\epsilon ξ=∣xn−a∣<ϵ
(1) - 构造 Δ = ∣ ∣ x n ∣ − ∣ a ∣ ∣ \Delta=||x_n|-|a|| Δ=∣∣xn∣−∣a∣∣,只要说明 ∀ ϵ > 0 \forall{\epsilon}>0 ∀ϵ>0, ∃ N > 0 \exist{N>0} ∃N>0,当 n > N n>N n>N时有 Δ < ϵ \Delta<\epsilon Δ<ϵ,即可证明结论成立
- 由绝对值不等式, Δ < ∣ x n − a ∣ \Delta<|x_n-a| Δ<∣xn−a∣
(2),(2)代入(1),得 Δ < ϵ \Delta<\epsilon Δ<ϵ,所以 lim n → ∞ ∣ x n ∣ = ∣ a ∣ \lim\limits_{n\to\infin}{|x_n|}=|a| n→∞lim∣xn∣=∣a∣ - Note:该命题的逆命题不成立,因为 Δ < ϵ \Delta<\epsilon Δ<ϵ ⇏ \not\Rightarrow ⇒ ξ < ϵ \xi<\epsilon ξ<ϵ;例如: x n = ( − 1 ) n x_n=(-1)^n xn=(−1)n,则 lim n → ∞ ∣ x n ∣ = 1 = ∣ 1 ∣ \lim\limits_{n\to\infin}{|x_n|}=1=|1| n→∞lim∣xn∣=1=∣1∣;而 lim n → ∞ ( − 1 ) n \lim\limits_{n\to\infin}{(-1)^{n}} n→∞lim(−1)n不存在
- 由条件, ∀ ϵ > 0 \forall{\epsilon}>0 ∀ϵ>0, ∃ N > 0 \exist{N>0} ∃N>0,当 n > N n>N n>N时有 ξ = ∣ x n − a ∣ < ϵ \xi=|x_n-a|<\epsilon ξ=∣xn−a∣<ϵ
- 推论:
- 若 lim n → ∞ x n = 0 \lim\limits_{n\to\infin}{x_n}=0 n→∞limxn=0,的充要条件是: lim n → ∞ ∣ x n ∣ = 0 \lim\limits_{n\to\infin}{|x_n|}=0 n→∞lim∣xn∣=0
- 有上结论可知必要性成立
- 充分性:若 lim n → ∞ ∣ x n ∣ = 0 \lim\limits_{n\to\infin}{|x_n|}=0 n→∞lim∣xn∣=0, ∀ ϵ > 0 \forall{\epsilon}>0 ∀ϵ>0, ∃ N > 0 \exist{N>0} ∃N>0,当 n > N n>N n>N时有 Δ = ∣ ∣ x n ∣ − 0 ∣ < ϵ \Delta=||x_n|-0|<\epsilon Δ=∣∣xn∣−0∣<ϵ成立,即 ∣ ∣ x n − 0 ∣ ∣ = ∣ x n − 0 ∣ < ϵ ||x_n-0||=|x_n-0|<\epsilon ∣∣xn−0∣∣=∣xn−0∣<ϵ,从而 lim n → ∞ x n = 0 \lim\limits_{n\to\infin}{x_n}=0 n→∞limxn=0
- 若 lim n → ∞ x n = 0 \lim\limits_{n\to\infin}{x_n}=0 n→∞limxn=0,的充要条件是: lim n → ∞ ∣ x n ∣ = 0 \lim\limits_{n\to\infin}{|x_n|}=0 n→∞lim∣xn∣=0
极限发散证明
- 证明极限发散,即证明数列极限不存在,仍然可以通过极限的定义入手证明
- 通常是通过取一个正数 ϵ = ϵ 0 > 0 \epsilon=\epsilon_0>0 ϵ=ϵ0>0说明 ϵ 0 \epsilon_0 ϵ0的取值下,“ ∄ N ∈ Z \not\exist{N}\in\mathbb{Z} ∃N∈Z,能使得当 n > N n>N n>N, ∣ x n − a ∣ < ϵ 0 |x_{n}-a|<\epsilon_0 ∣xn−a∣<ϵ0恒成立”
- 例:
- 证明数列 x n = ( − 1 ) n + 1 x_n=(-1)^{n+1} xn=(−1)n+1, ( n = 1 , 2 , ⋯ ) (n=1,2,\cdots) (n=1,2,⋯)是发散的
- 若数列收敛,则其有唯一极限,不妨设极限存在且等于 a a a,
- 按极限定义,对于 ∀ ϵ > 0 \forall{\epsilon}>0 ∀ϵ>0, ∃ N ∈ N + \exist{N}\in\mathbb{N_+} ∃N∈N+,当 n > N n>N n>N时有 ∣ x n − a ∣ < ϵ |x_n-a|<\epsilon ∣xn−a∣<ϵ
- 对于本例,不妨取 ϵ = 1 2 \epsilon=\frac{1}{2} ϵ=21,则 ∣ x n − a ∣ < 1 2 |x_n-a|<\frac{1}{2} ∣xn−a∣<21,而根据 x n x_n xn的同向公式可知, x n x_n xn重复取 − 1 , 1 -1,1 −1,1,当 x n = − 1 x_n=-1 xn=−1时, ∣ − 1 − a ∣ > 1 {|-1-a|}>1 ∣−1−a∣>1,与 ∣ x n − a ∣ < 1 2 |x_n-a|<\frac{1}{2} ∣xn−a∣<21矛盾,从而 { x n } \set{x_n} {xn}不存在极限 a a a
- 所以 { x n } \set{x_n} {xn}发散
常用数列极限
- lim n → ∞ q n \lim\limits_{n\to\infin}{q^{n}} n→∞limqn= 0 0 0, ∣ q ∣ < 1 |q|<1 ∣q∣<1;
- lim n → ∞ 1 n α = 0 \lim\limits_{n\to\infin}{\frac{1}{n^{\alpha}}}=0 n→∞limnα1=0, α > 0 \alpha>0 α>0
数列极限的几何意义
- lim n → ∞ x n = a \lim\limits_{n\to{\infin}}x_n=a n→∞limxn=a的几何意义是:以数轴为背景,对于 a a a点的任意 ϵ \epsilon ϵ邻域 U ( a , ϵ ) U(a,\epsilon) U(a,ϵ),即开区间 ( a − ϵ , a + ϵ ) (a-\epsilon,a+\epsilon) (a−ϵ,a+ϵ),一定存在 N N N,使得当 n > N n>N n>N,即第 N N N项后的点 x n x_n xn都落在开区间 U ( a , ϵ ) U(a,\epsilon) U(a,ϵ)内,而只有有限个点落在该区间以外
例
- lim n → ∞ ( n + 1 n ) ( − 1 ) n \lim\limits_{n\to\infin}(\frac{n+1}{n})^{(-1)^{n}} n→∞lim(nn+1)(−1)n= 1 1 1
- 分析: lim n → ∞ ( 2 n 2 n − 1 ) \lim\limits_{n\to\infin}(\frac{2n}{2n-1}) n→∞lim(2n−12n)=1; lim n → ∞ ( 2 n + 1 2 n ) \lim\limits_{n\to\infin}(\frac{2n+1}{2n}) n→∞lim(2n2n+1)=1
函数的极限
- 另见: 函数极限
相关文章:
AM@数列极限
文章目录 abstract极限👺极限的主要问题 数列极限数列极限的定义 ( ϵ − N ) (\epsilon-N) (ϵ−N)语言描述极限表达式成立的证明极限发散证明常用数列极限数列极限的几何意义例 函数的极限 abstract 数列极限 极限👺 极限分为数列的极限和函数的极限…...
Vue-2.3v-model原理
原理:v-model本质上是一个语法糖,例如应用在输入框上,就是value属性和input事件的合写。 作用:提供数据的双向绑定 1)数据变,视图跟着变:value 2)视图变,数据跟着变input 注意&a…...
左手 Serverless,右手 AI,7 年躬身的古籍修复之路
作者:宋杰 “AI 可以把我们思维体系当中,过度专业化、过度细分的这些所谓的知识都替代掉,让我们集中精力去体验自己的生命。我挺幸运的,代码能够有 AI 辅助,也能够有 Serverless 解决我的运营成本问题。Serverless 它…...
计算mask的体素数量
import numpy as np import nibabel as nib # 用于处理神经影像数据的库 # 从文件中加载mask图像 mask_image nib.load(rE:\mask.nii.gz) # 获取图像数据 mask_data mask_image.get_fdata() # 计算非零像素的数量,即白质骨架的体素总数 voxel_count np.count_no…...
VR全景营销颠覆传统营销,让消费者身临其境
随着VR的普及,各种VR产品、功能开始层出不穷,并且在多个领域都有落地应用,例如文旅、景区、酒店、餐饮、工厂、地产、汽车等,在这个“内容为王”的时代,VR全景展示也是一种新的内容表达方式。 VR全景营销让消费者沉浸式…...
FreeRTOS学习笔记——四、任务的定义与任务切换的实现
FreeRTOS学习笔记——四、任务的定义与任务切换的实现 0 前言1 什么是任务2 创建任务2.1 定义任务栈2.2 定义任务函数2.3 定义任务控制块2.4 实现任务创建函数2.4.1 任务创建函数 —— xTaskCreateStatic()函数2.4.2 创建新任务——prvInitialiseNewTask()函数2.4.3 初始化任务…...
js 之让人迷惑的闭包 03
文章目录 一、闭包是什么? 🤦♂️二、闭包 😎三、使用场景 😁四、使用场景(2) 😁五、闭包的原理六、思考总结一、 更深层次了解闭包,分析以下代码执行过程二、闭包三、闭包定义四、…...
10月10日上课内容 Docker--harbor私有仓库部署与管理
Docker--harbor私有仓库部署与管理 ------------------ 1、搭建本地私有仓库 ------------------------------ #首先下载 registry 镜像 docker pull registry #在 daemon.json 文件中添加私有镜像仓库地址 vim /etc/docker/daemon.json { "insecure-registries"…...
Java 序列化和反序列化为什么要实现 Serializable 接口
第一、序列化和反序列化 序列化:把对象转换为字节序列的过程称为对象的序列化. 反序列化:把字节序列恢复为对象的过程称为对象的反序列化. 第二、什么时候需要用序列化和反序列化呢? 当我们只在本地JVM里运行下Java实例, 这个时候是不需要什么序列化和…...
vite+vue3+ts中使用require.context | 报错require is not defined | 获取文件夹中的文件名
vitevue3ts中使用require.context|报错require is not defined|获取文件夹中的文件名 目录 vitevue3ts中使用require.context|报错require is not defined|获取文件夹中的文件名一、问题背景二、报错原因三、解决方法 一、问题背景 如题在vitevue3ts中使用required.context时报…...
C#(Csharp)我的基础教程(四)(我的菜鸟教程笔记)-Windows项目结构分析、UI设计和综合事件应用的探究与学习
目录 windows项目是我们.NET学习一开始必备的内容。 1、窗体类(主代码文件窗体设计器后台代码文件) 主窗体对象的创建:在Program类里面: Application.Run(new FrmMain());这句代码就决定了,当前窗体是项目的主窗体。…...
Flink: Only supported for operators
Exception in thread "main" java.lang.UnsupportedOperationException: Only supported for operators.at org.apache.flink.streaming.api.scala.DataStream.name(...
NSIDC定义的海冰相关概念
文章目录 相关概念Matlab绘图结果展示 相关概念 NSIDC 表示 “National Snow and Ice Data Center”,即美国国家雪和冰数据中心。NSIDC 是一个位于美国科罗拉多大学波尔得分校的研究中心,致力于收集、管理和分发全球雪和冰的科学数据。 Matlab绘图 cl…...
【码银送书第八期】《Python数据挖掘:入门进阶与实用案例分析》
摘要:本案例将主要结合自动售货机的实际情况,对销售的历史数据进行处理,利用pyecharts库、Matplotlib库进行可视化分析,并对未来4周商品的销售额进行预测,从而为企业制定相应的自动售货机市场需求分析及销售建议提供参…...
微信小程序底部tabBar不显示图标
现场还原 在设置微信小程序底部tabBar导航图标时,无论如何操作均无法显示在界面上 解决思路 问题1 图标类型 一开始以为不支持png类型,但查看官方API仅提示ICON尺寸大小 打开其他项目可以正常展示,排除图标类型问题 iconPath string 否 …...
PostgreSQL基操之角色、表空间、数据库与表
PostgreSQL基操之角色、表空间、数据库与表 角色创建与管理表空间创建与管理数据库创建与管理表创建与管理 角色创建与管理 PostgreSQL数据库里没有User的概念,只有Role的概念。有的Role可以用于登录数据库,这些Role与其他数据库中的用户等价。 --创建…...
【算法|滑动窗口No.1】leetcode209. 长度最小的子数组
个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望…...
11_博客管理系统_实现过程
项目初始化 创建项目文件夹进入文件夹,执行 npm init -y 命令安装 express 和 mongoose,npm install express mongoose创建项目入口文件,app.js 或 index.js在 app.js 中进行项目搭建配置网站的路由配置网站静态资源目录 配置静态页面 配置…...
安防视频监控平台EasyCVR集成到ios系统不能播放是什么原因?如何解决?
视频监控TSINGSEE青犀视频平台EasyCVR能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,在视频监控播放上,TSINGSEE青犀视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放,可同时播放多路视频流&#…...
hutool实现文件上传与下载
<dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.16</version></dependency> 文件上传需要创建一个表 Autowiredprivate SysFileInfoMapper sysFileInfoMapper;Value("${ty.…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
