<图像处理> Fast角点检测
Fast角点检测
基本原理是使用圆周长为N个像素的圆来判定其圆心像素P是否为角点,如下图所示为圆周长为16个像素的圆(半径为3);OpenCV还提供圆周长为12和8个像素的圆来检测角点。

相对中心像素的位置信息
//圆周长为16
static const int offsets16[][2] =
{{0, 3}, { 1, 3}, { 2, 2}, { 3, 1}, { 3, 0}, { 3, -1}, { 2, -2}, { 1, -3},{0, -3}, {-1, -3}, {-2, -2}, {-3, -1}, {-3, 0}, {-3, 1}, {-2, 2}, {-1, 3}
};//圆周长为12
static const int offsets12[][2] =
{{0, 2}, { 1, 2}, { 2, 1}, { 2, 0}, { 2, -1}, { 1, -2},{0, -2}, {-1, -2}, {-2, -1}, {-2, 0}, {-2, 1}, {-1, 2}
};//圆周长为8
static const int offsets8[][2] =
{{0, 1}, { 1, 1}, { 1, 0}, { 1, -1},{0, -1}, {-1, -1}, {-1, 0}, {-1, 1}
};
角点判定条件
在圆周上顺时针从顺时针方向从1到N的顺序对圆周像素点进行连续编号。如果在圆周上有M个连续的像素的亮度都比圆心像素的亮度还要亮,或者比圆心像素的亮度还要暗,并且亮度差都大于设置的阈值t,则圆心像素被确定为角点。因此,成为角点必须满足下列两个条件之一。
- 条件1:集合S由圆周上M个连续的像素x组成,该集合的任意像素x都满足 I x > I p + t I_x>I_p+t Ix>Ip+t
- 条件2:集合S由圆周上M个连续的像素x组成,该集合的任意像素x都满足 I x < I p − t I_x<I_p-t Ix<Ip−t
在OpenCV中有三种模式,如下:
- TYPE_9_16,表示圆周上16个像素点/连续9个像素点满足条件
- TYPE_7_12,表示圆周上12个像素点/连续7个像素点满足条件
- TYPE_5_8,表示圆周上8个像素点/连续5个像素点满足条件
非角点检测
在一副图像中,非角点往往是占多数。而非角点检测比角点检测容易很多,因此首先剔除非角点将大大提高角点检测速度。例如,当圆周长N为16个像素,连续像素M为12,所以编号为1,5,9,13的这4个圆周像素点中应该至少有3个满足条件。在OpenCV中,采用了另一种方法来判断非角点,即同时检测任意直径上两个端点像素的像素值。
非极大值抑制
如果N一定,我们把使P仍然是角点的最大阈值 t t t定义为P的角点响应值,通过迭代,每次迭代比较8个连续的圆周像素与圆心像素之间的绝对差值,得到8个绝对差值中的最小值 d d d,与这8个连续像素两端相邻的两个圆周像素与圆心像素的绝对差值分别为 d 0 d_0 d0和 d 9 d_9 d9,则此次迭代所得到的角点响应值 v i v_i vi为
v i = m a x ( t , m i n ( d , d 0 ) , m i n ( d , d 9 ) ) v_i=max(t,min(d,d_0),min(d,d_9)) vi=max(t,min(d,d0),min(d,d9))
16个圆周像素需要迭代16次,则最终的角点响应值V为:
V = m a x ( v i ) V=max(v_i) V=max(vi)
角点响应 V V V得到后,需要在 3 ∗ 3 3*3 3∗3的邻域内比较 V V V,只保留那些比其8邻域都大的像素作为最终的角点。非角点的响应值定义为0。
Fast角点检测步骤
- 对被检测像素的16个圆周像素的部分像素点进行非角点检测;
- 如果初步判断为角点,则对圆周上的全部像素进行角点检测;
- 对角点进行非极大值抑制,最终得到角点;
OpenCV函数
void cv::FAST(InputArray image, std::vector<KeyPoint>& keypoints, int threshold, bool nonmaxSuppression = true) void cv::FAST(InputArray image, std::vector<KeyPoint>& keypoints, int threshold, bool nonmaxSuppression, FastFeatureDetector::DetectorType type) Parameters
image 输入图像,灰度图像;
keypoints 检测的关键角点;
threshold 中心像素与围绕该像素的圆形像素之间强度差的阈值;
nonmaxSuppression 如果为true, 则对检测到的角点(关键点)进行非极大值抑制;
type 三种选择:FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12, FastFeatureDetector::TYPE_5_8
相关文章:
<图像处理> Fast角点检测
Fast角点检测 基本原理是使用圆周长为N个像素的圆来判定其圆心像素P是否为角点,如下图所示为圆周长为16个像素的圆(半径为3);OpenCV还提供圆周长为12和8个像素的圆来检测角点。 相对中心像素的位置信息 //圆周长为16 static c…...
基于centos、alpine制作Java JDK基础镜像
文章目录 前言一、 简介二、制作JDK/Java基础镜像1.准备事项2.制作Dockerfile脚本2.1.基于centos作为基础镜像2.2.基于alpine作为基础镜像3.构建镜像4.测试验证前言 在日常开发中,但凡项目需要docker容器化部署,制作项目镜像前都需要在Dockerfile中配置Java基础镜像。为什么…...
【AI视野·今日Robot 机器人论文速览 第五十二期】Wed, 11 Oct 2023
AI视野今日CS.Robotics 机器人学论文速览 Wed, 11 Oct 2023 Totally 31 papers 👉上期速览✈更多精彩请移步主页 Daily Robotics Papers RoboHive: A Unified Framework for Robot Learning Authors Vikash Kumar, Rutav Shah, Gaoyue Zhou, Vincent Moens, Vittor…...
hive 知识总结
编辑 社区公告教程下载分享问答JD 登 录 注册 01 hive 介绍与安装 1 hive介绍与原理分析 Hive是一个基于Hadoop的开源数据仓库工具,用于存储和处理海量结构化数据。它是Facebook 2008年8月开源的一个数据仓库框架,提供了类似于SQL语法的HQL…...
golang/云原生/Docker/DevOps/K8S/持续 集成/分布式/etcd 教程
3-6个月帮助学员掌握golang后端开发岗位必备技术点 教程时长: 150小时 五大核心专栏,原理源码案例分析项目实战直击工作岗位 golang:解决go语言编程问题 工程组件:解决golang工程化问题 分布式中间件:解决技术栈单一及分布式开发问题 云原生…...
jeecg库login登录过程分析笔记
jeecg库(版本jeecg-boot-v3.5.1last)实现了用户登录功能,二开时为了借鉴jeecg用户登录的方法,跑了一遍登录方法: org.jeecg.modules.system.controller.LoginController#login 定义这个方法的类的路径是:…...
echarts仪表盘vue
<div class"ybptx" ref"btryzb"></div>mounted() {this.getBtData();},getBtData() {var chart this.$echarts.init(this.$refs.btryzb);var data_czzf 88;var option {series: [{name: 内层数据刻度,type: gauge,radius: 80%,min: 0,max: 1…...
管道和重定向分号-连接符
本文介绍shell脚本常用命令连接符:管道符( | )、重定向( < 、>、>>、2> 、&> )、分号( ; ) 本文内容同微信公众号【凡登】,关注不迷路,学习上高速,欢迎关注共同学习。 1、管道 进程的通信方式之一…...
WSL VScode连接文件后无法修改(修改报错)
权限问题 usrname:用户名 dirpath:要修改的文件夹路径 sudo chown -R usrname /dirpath...
迷你Ceph集群搭建(超低配设备)
我的博客原文链接:https://blog.gcc.ac.cn/post/2023/%E8%BF%B7%E4%BD%A0ceph%E9%9B%86%E7%BE%A4%E6%90%AD%E5%BB%BA/ 环境 机器列表: IP角色说明10.0.0.15osdARMv7,512M内存,32G存储,百兆网口10.0.0.16clientARM64…...
Python数据挖掘项目实战——自动售货机销售数据分析
摘要:本案例将主要结合自动售货机的实际情况,对销售的历史数据进行处理,利用pyecharts库、Matplotlib库进行可视化分析,并对未来4周商品的销售额进行预测,从而为企业制定相应的自动售货机市场需求分析及销售建议提供参…...
TortoiseGit使用教程
文章目录 一. 创建仓库二. Clone仓库三. 查看修改记录四. 版本回溯五. 创建分支六. 切换分支七. 合并分支八. 删除分支九. TortoiseGit配置1. 常规配置2. 配置远程仓库账户密码3. 配置远程仓库 一. 创建仓库 在需要创建仓库的文件上右键→Git Create repository here… 创建仓…...
如何测量GNSS信号和高斯噪声功率及载波比?
引言 本文将介绍如何测量德思特Safran GSG-7或GSG-8 GNSS模拟器的输出信号功率。此外,还展示了如何为此类测量正确配置德思特Safran Skydel仿真引擎以及如何设置射频设备,从而使用频谱分析仪准确测量信号的射频功率。 什么是载波噪声密度C/N0 GNSS接收…...
动态壁纸软件iWall mac中文特色
iWall for mac是一款动态壁纸软件,它可以使用任何格式的漂亮视频(无须转换),音频(可视化功能),图片,动画,Flash,gif,swf,程序,网页,网站做为您的动态壁纸&…...
xtrabackup全备 增备
版本针对mysql8.0版本 官方下载地址 https://www.percona.com/downloads 自行选择下载方式 yum安装方式 1、下载上传服务器 安装软件 [rootmaster mysql]# ll percona-xtrabackup-80-8.0.33-28.1.el7.x86_64.rpm -rw-r--r--. 1 root root 44541856 Oct 10 13:25 percona-x…...
【广州华锐互动】灭火器使用VR教学系统应用于高校消防演练有什么好处?
在科技发展的大潮中,虚拟现实(VR)技术以其独特的沉浸式体验赢得了各个领域的青睐,其中包括教育和培训。在高校消防演练中,VR也成为了一种新的消防教育方式。 由广州华锐互动开发的VR消防演练系统,就包含了校…...
Pymol做B因子图
分子动力学模拟结束后,获得蛋白的平均结构, 比如获得的平均结构为WT-average.pdb 然后将平均结构导入到Pymol 中,可以得到B因子图。 gmx rmsf -f md_0_100_noPBC.xtc -s md_0_100.tpr -o rmsf-per-residue.xvg -ox average.pdb -oq bfactors…...
EKF例程 matlab
% 不含IMU误差方程的EKF滤波典型程序,适用于多次滤波的第二级 % author:Evand % date: 2023-09-20 % Ver1 clear;clc;close all; global T %% initial T 0.1; %采样率 t [T:T:100]; Q 0.1diag([1,1,1]);wsqrt(Q)randn(size(Q,1),length(t)); R 1diag([1,1,1]);v…...
【C语言】atoi函数的模拟
atoi对于初学者来说大概率是一个陌生的函数 但不要害怕,我们可以通过各种网站去查询 例如: cplusplus就是一个很好的查询网站 目录 函数介绍模拟实现需要注意的点 函数介绍 我们发现这是一个将字符串转换为整形数字的函数 例如: int main()…...
JAXB 使用记录 bean转xml xml转bean 数组 继承 CDATA(转义问题)
JAXB 使用记录 部分内容引自 https://blog.csdn.net/gengzhy/article/details/127564536 基础介绍 JAXBContext类:是应用的入口,用于管理XML/Java绑定信息 Marshaller接口:将Java对象序列化为XML数据 Unmarshaller接口:将XML数…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
