当前位置: 首页 > news >正文

1.1 向量与线性组合

一、向量的基础知识

两个独立的数字 v 1 v_1 v1 v 2 v_2 v2,将它们配对可以产生一个二维向量 v \boldsymbol{v} v 列向量 v v = [ v 1 v 2 ] v 1 = v 的第一个分量 v 2 = v 的第二个分量 \textbf{列向量}\,\boldsymbol v\kern 10pt\boldsymbol v=\begin{bmatrix}v_1\\v_2\end{bmatrix}\kern 10pt\begin{matrix}v_1=\boldsymbol v\,的第一个分量\\v_2=\boldsymbol v\,的第二个分量\end{matrix} 列向量vv=[v1v2]v1=v的第一个分量v2=v的第二个分量这里将 v \boldsymbol v v 写成一列(column),而不是一行(row),单一的字母 v \boldsymbol v v粗斜体字)表示这一对数字 v 1 v_1 v1 v 2 v_2 v2(浅色斜体字)。
向量的一个基础运算是向量的加法,即将两个向量的每个分量分别相加: 向量加法 v = [ v 1 v 2 ] 与 w = [ w 1 w 2 ] 相加得到 v + w = [ v 1 + w 1 v 2 + w 2 ] \textbf{向量加法}\kern 10pt\boldsymbol v=\begin{bmatrix}v_1\\v_2\end{bmatrix}\kern 5pt与\kern 5pt\boldsymbol w=\begin{bmatrix}w_1\\w_2\end{bmatrix}\kern 5pt相加得到\kern5pt\boldsymbol v+\boldsymbol w=\begin{bmatrix}v_1+w_1\\v_2+w_2\end{bmatrix} 向量加法v=[v1v2]w=[w1w2]相加得到v+w=[v1+w1v2+w2]减法同理, v − w \boldsymbol v-\boldsymbol w vw 的分量是 v 1 − w 1 v_1-w_1 v1w1 v 2 − w 2 v_2-w_2 v2w2
向量的另一个基础运算是数乘(scalar multiplication),一个向量可以和任意数 c c c 相乘,就是用 c c c 去乘这个向量的每个分量: 数乘 2 v = [ 2 v 1 2 v 2 ] = v + v , − v = [ − v 1 − v 2 ] \textbf{数乘}\kern 10pt2\boldsymbol v=\begin{bmatrix}2v_1\\2v_2\end{bmatrix}=\boldsymbol v+\boldsymbol v,-\boldsymbol v=\begin{bmatrix}-v_1\\-v_2\end{bmatrix} 数乘2v=[2v12v2]=v+vv=[v1v2] c v c\boldsymbol v cv 的分量是 c v 1 cv_1 cv1 c v 2 cv_2 cv2,数字 c c c 称为 “数量”(或纯量 scalar)。
需要注意的是: − v -\boldsymbol v v v \boldsymbol v v 的和(sum)是零向量,以粗体 0 \boldsymbol 0 0 表示,与一般的数字 0 0 0 不同,向量 0 \boldsymbol 0 0 的分量是 0 0 0 0 0 0
线性代数就是建立在 v + w \boldsymbol v+\boldsymbol w v+w c v c\boldsymbol v cv d w d\boldsymbol w dw 的运算 —— 向量的加法与数乘

二、线性组合

将向量的加法与数乘相结合可以产生 v \boldsymbol v v w \boldsymbol w w 的 “线性组合”。用 c c c v \boldsymbol v v d d d w \boldsymbol w w,然后相加得到 c v + d w c\boldsymbol v+d\boldsymbol w cv+dw c v 与 d w 的和是 线性组合 c v + d w c\boldsymbol v\,与\,d\boldsymbol w\,的和是\kern 10pt\colorbox{cyan}{$线性组合\,\ c\boldsymbol v+d\boldsymbol w$} cvdw的和是线性组合 cv+dw四种特殊的线性组合:和、差、零、数乘 c v c\boldsymbol v cv
1 v + 1 w = 向量的和,如图 1.1 a 1\boldsymbol v+1\boldsymbol w=向量的和,如图1.1a 1v+1w=向量的和,如图1.1a 1 v − 1 w = 向量的差,如图 1.1 b 1\boldsymbol v-1\boldsymbol w=向量的差,如图1.1b 1v1w=向量的差,如图1.1b 0 v + 0 w = 零向量 0\boldsymbol v+0\boldsymbol w=\textbf{零向量}\kern 56pt 0v+0w=零向量 c v + 0 w = 沿着 v 方向的向量 c v c\boldsymbol v+0\boldsymbol w=沿着\,\boldsymbol v 方向的向量\,c\boldsymbol v cv+0w=沿着v方向的向量cv零向量永远是可能的组合(只要系数都为零),向量的 “空间” 都包含零向量。从大局上看,线性代数的工作就是取得 v \boldsymbol v v w \boldsymbol w w 所有的线性组合。
对于代数来说,我们只需要向量的分量(如 4 4 4 2 2 2)。向量也可以画在图形上,向量 v \boldsymbol v v 由箭头表示,箭头向右横跨 v 1 = 4 v_1=4 v1=4 个单位,再往上走 v 2 = 2 v_2=2 v2=2 个单位,终点的坐标等于 ( 4 , 2 ) (4,2) (4,2)。这个点就是向量的另外一种表示法。向量 v \boldsymbol v v 可以用三种方式来描述: 向量 v 的表示法 两个数字 由 ( 0 , 0 ) 出发的箭头 平面上的点 向量\,\boldsymbol v\,的表示法\kern 10pt\colorbox{cyan}{两个数字}\,\,\colorbox{cyan}{由$(0,0)$出发的箭头}\,\,\colorbox{cyan}{平面上的点} 向量v的表示法两个数字(0,0)出发的箭头平面上的点我们用数字做加法,用箭头可视化 v + w \boldsymbol v+\boldsymbol w v+w

在这里插入图片描述
先沿着 v \boldsymbol v v 再沿着 w \boldsymbol w w 前进,或者沿着 v + w \boldsymbol v+\boldsymbol w v+w 走对角线;也可以先沿着 w \boldsymbol w w 再沿着 v \boldsymbol v v。换言之, w + v \boldsymbol w+\boldsymbol v w+v v + w \boldsymbol v+\boldsymbol w v+w 的答案相同。沿着平行四边形(本例是矩形)存在不同的前进方向。

三、三维向量

有两个分量的向量对应到 x y xy xy 平面上的一个点, v \boldsymbol v v 的分量就是点的坐标: x = v 1 x=v_1 x=v1 y = v 2 y=v_2 y=v2。向量从 ( 0 , 0 ) (0,0) (0,0) 出发,箭头在 ( v 1 , v 2 ) (v_1,v_2) (v1v2) 结束。
如果向量有三个分量,那么就对应三维的 x y z xyz xyz 空间中的一点。下面的列向量就有三个分量: v = [ 1 1 − 1 ] , w = [ 2 3 4 ] , v + w = [ 3 4 3 ] \boldsymbol v=\begin{bmatrix}1\\1\\-1\end{bmatrix},\boldsymbol w=\begin{bmatrix}2\\3\\4\end{bmatrix},\boldsymbol v+\boldsymbol w=\begin{bmatrix}3\\4\\3\end{bmatrix} v= 111 w= 234 v+w= 343 向量 v \boldsymbol v v 对应到三维空间的一个箭头,通常由原点出发,原点即 x y z xyz xyz 轴的交点,其坐标为 ( 0 , 0 , 0 ) (0,0,0) (0,0,0),箭头的终点坐标是 v 1 v_1 v1 v 2 v_2 v2 v 3 v_3 v3。三维向量同样有三种表示方式:列向量原点出发的箭头箭头的终点(空间中一点)
注意,平面向量 ( x , y ) (x,y) (x,y) 与三维空间的 ( x , y , 0 ) (x,y,0) (x,y,0) 是不同的。

在这里插入图片描述 v = [ 1 1 − 1 ] 也可以写成 v = ( 1 , 1 , − 1 ) \boldsymbol v=\begin{bmatrix}1\\1\\-1\end{bmatrix}\,\,也可以写成\,\,\boldsymbol v=(1,1,-1) v= 111 也可以写成v=(1,1,1)写成行形式(在括号中)是为了节省空间,但是 v = ( 1 , 1 , − 1 ) \boldsymbol v=(1,1,-1) v=(1,1,1) 不是行向量!它仍是列向量,与行向量 [ 1 1 − 1 ] [1\kern 6pt1\,-1] [111] 是不同的,尽管它们都具有三个分量。这里 1 × 3 1\times3 1×3 的行向量是 3 × 1 3\times1 3×1 的列向量 v \boldsymbol v v 的 “转置”(transpose)。
三维空间中, v + w \boldsymbol v+\boldsymbol w v+w 仍然是每次计算一个分量,向量的和的分量是 v 1 + w 1 v_1+w_1 v1+w1 v 2 + w 2 v_2+w_2 v2+w2 v 3 + w 3 v_3+w_3 v3+w3,同理可以推出 4 4 4 维直至 n n n 维空间中向量的加法。当 w \boldsymbol w w v \boldsymbol v v 的终点出发,则第三边为 v + w \boldsymbol v+\boldsymbol w v+w,平行四边形的另一个环绕方向是 w + v \boldsymbol w+\boldsymbol v w+v。这四个边是在同一平面的,向量的和 v + w − v − w \boldsymbol v+\boldsymbol w-\boldsymbol v-\boldsymbol w v+wvw 走完一圈产生零向量
三维空间三个向量的线性组合, u + 4 v − 2 w \boldsymbol u+4\boldsymbol v-2\boldsymbol w u+4v2w:分别用 1 1 1 4 4 4 − 2 -2 2 乘三个向量再相加的线性组合 [ 1 0 3 ] + 4 [ 1 2 1 ] − 2 [ 2 3 − 1 ] = [ 1 2 9 ] \begin{bmatrix}1\\0\\3\end{bmatrix}+4\begin{bmatrix}1\\2\\1\end{bmatrix}-2\begin{bmatrix}2\\3\\-1\end{bmatrix}=\begin{bmatrix}1\\2\\9\end{bmatrix} 103 +4 121 2 231 = 129

四、重要问题

一个向量 u \boldsymbol u u,唯一的线性组合是 c u c\boldsymbol u cu。对于两个向量,线性组合是 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv。对于三个向量,线性组合是 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew。对于每个 c c c d d d e e e,假设 u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 是三维空间中的向量:
(1)所有 c u c\boldsymbol u cu 的组合,图形是什么?
(2)所有 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 的组合,图形是什么?
(3)所有 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew 的组合,图形是什么?
上述的答案都与 u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 有关,若它们均为零向量,所有的线性组合都是零。如果它们都是典型的非零向量(随机选定分量,即它们两两不平行,三个向量不共面):
(1)所有 c u c\boldsymbol u cu 的组合形成一条过原点(0,0,0)的直线
(2)所有的 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 的组合形成一个 过(0,0,0)的平面
(3)所有的 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew 的组合形成三维空间
因为当 c c c 0 0 0 时,零向量 ( 0 , 0 , 0 ) (0,0,0) (0,0,0) 会在直线上;当 c c c d d d 都为 0 0 0 时,零向量会在平面上。向量 c u c\boldsymbol u cu 形成的直线是无限长(正向与反向)的,三维空间中两个向量的组合,全部 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 会形成三维空间内一个平面,且过原点;一条直线上的所有 c u c\boldsymbol u cu 加上另一条直线上的所有 d v d\boldsymbol v dv 就会形成 Figure1.3 所示的平面。
在这里插入图片描述
当引入第三个向量 w \boldsymbol w w 时,所有的 e w e\boldsymbol w ew 会得到第三条直线。假设第三条直线不在 u \boldsymbol u u v \boldsymbol v v 形成的平面上,则 e w e\boldsymbol w ew c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 的组合可以形成整个三维空间。
典型情况下,我们会得到线、面、然后空间,但是还会有其它可能的情况。若 w \boldsymbol w w 正好等于 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 时,即第三个向量 w \boldsymbol w w 在前两个向量所形成的平面上,那么 u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 的组合仍然会在 u v \boldsymbol{uv} uv 平面内,也就不能得到整个三维空间。

五、主要内容总结

(1)二维空间的向量 v \boldsymbol v v 由两个分量 v 1 v_1 v1 v 2 v_2 v2
(2) v + w = ( v 1 + w 1 , v 2 + w 2 ) \boldsymbol v+\boldsymbol w=(v_1+w_1,v_2+w_2) v+w=(v1+w1,v2+w2) c v = ( c v 1 , c v 2 ) c\boldsymbol v=(cv_1,cv_2) cv=(cv1,cv2),每次计算一个分量。
(3)三个向量 u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 的线性组合是 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew
(4)选取所有的 u \boldsymbol u u u \boldsymbol u u v \boldsymbol v v u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 的线性组合,在三维空间中,典型情况下,会形成一条直线一个平面整个空间 R 3 \textbf R^3 R3

六、例题

例1 v = ( 1 , 1 , 0 ) \boldsymbol v=(1,1,0) v=(1,1,0) w = ( 0 , 1 , 1 ) \boldsymbol w=(0,1,1) w=(0,1,1) 的线性组合会形成 R 3 \textbf R^3 R3 中的一个平面,描述这个平面,并找到一个不是 v \boldsymbol v v w \boldsymbol w w 线性组合的向量,即不在该平面上的向量。
解: v \boldsymbol v v w \boldsymbol w w 所形成的平面包含所有的组合 c v + d w c\boldsymbol v+d\boldsymbol w cv+dw,该平面上的向量允许任意和 c c c d d d 线性组合 c v + d w = c [ 1 1 0 ] + d [ 0 1 1 ] = [ c c + d d ] 形成一个平面 线性组合\kern 3ptc\boldsymbol v+d\boldsymbol w=c\begin{bmatrix}1\\1\\0\end{bmatrix}+d\begin{bmatrix}0\\1\\1\end{bmatrix}=\begin{bmatrix}c\\c+d\\d\end{bmatrix}\kern 3pt形成一个平面 线性组合cv+dw=c 110 +d 011 = cc+dd 形成一个平面可以发现其第二分量 c + d c+d c+d 为第一分量与第三分量之和。 ( 1 , 2 , 3 ) (1,2,3) (1,2,3) 即不在这个平面上,这是因为 2 ≠ 1 + 3 2\neq1+3 2=1+3

例2 v = ( 1 , 0 ) \boldsymbol v=(1,0) v=(1,0) w = ( 0 , 1 ) \boldsymbol w=(0,1) w=(0,1),描述所有的 c v c\boldsymbol v cv 点。
(1)当 c c c 为任意整数时;
(2)当 c c c 非负数时, c ≥ 0 c\geq0 c0
再将(1)(2)得到的 c v c\boldsymbol v cv 加上所有的 d w d\boldsymbol w dw,描述所有的 c v + d w c\boldsymbol v+d\boldsymbol w cv+dw
解:(1)当 c c c 为任意整数时,向量 c v = ( c , 0 ) c\boldsymbol v=(c,0) cv=(c,0) 是沿着 x x x 轴( v \boldsymbol v v 的方向)的等距点,包含 ( − 2 , 0 ) (-2,0) (2,0) ( − 1 , 0 ) (-1,0) (1,0) ( 0 , 0 ) (0,0) (0,0) ( 1 , 0 ) (1,0) (1,0) ( 2 , 0 ) (2,0) (2,0)
(2)当 c ≥ 0 c\geq0 c0 时,向量 c v c\boldsymbol v cv 形成一条半线,即 x x x 正半轴。这条线从 ( 0 , 0 ) (0,0) (0,0) 开始,此时 c = 0 c=0 c=0。包含点 ( 100 , 0 ) (100,0) (100,0) ( π , 0 ) (π,0) (π,0),但不包含 ( − 100 , 0 ) (-100,0) (100,0)
(1’)加上所有的向量 d w = ( 0 , d ) d\boldsymbol w=(0,d) dw=(0,d),会在这些等距点 c v c\boldsymbol v cv 上放置一条垂直(vertical)线,将会得到无数条(全部整数 c c c,任意的 d d d)平行线。
(2’)加上所有的向量 d w = ( 0 , d ) d\boldsymbol w=(0,d) dw=(0,d),会在半线上的每一个 c v c\boldsymbol v cv 上放置一条垂直线,将会得到一个半平面, x y xy xy 平面的右半部分包括任意的 x ≥ 0 x\geq0 x0 和任意的 y y y

例3】求出 c c c d d d 的两个方程,使得线性组合 c v + d w = b c\boldsymbol v+d\boldsymbol w=\boldsymbol b cv+dw=b v = [ 2 − 1 ] , w = [ − 1 2 ] , b = [ 1 0 ] \boldsymbol v=\begin{bmatrix}2\\-1\end{bmatrix},\boldsymbol w=\begin{bmatrix}-1\\2\end{bmatrix},\boldsymbol b=\begin{bmatrix}1\\0\end{bmatrix} v=[21]w=[12]b=[10]
解: 在应用数学中,很多问题都有两个部分:

  1. 建模(modeling)部分:利用一些方程式来表述问题。
  2. 计算(computational)部分:利用快速且正确的算法求解方程组。

这里仅讨论第一部分,使用方程组表示。这里可以使用一个线性代数的基础模型: 求 n 个数值 c 1 , ⋯ , c n ,使得 c 1 v + ⋯ c n v n = b 求\,n\,个数值\,c_1,\cdots,c_n,使得\,\,c_1\boldsymbol v+\cdots c_n\boldsymbol v_n=\boldsymbol b n个数值c1,,cn,使得c1v+cnvn=b n = 2 n=2 n=2 时即为此例题的模型。 向量方程式 c v + d w c [ 2 − 1 ] + d [ − 1 2 ] = [ 1 0 ] 向量方程式 \kern 4ptc\boldsymbol v+d\boldsymbol w\kern 10ptc\begin{bmatrix}2\\-1\end{bmatrix}+d\begin{bmatrix}-1\\2\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix} 向量方程式cv+dwc[21]+d[12]=[10]可以得到两个一般方程式: { 2 c − d = 1 − c + 2 d = 1 \left\{\begin{matrix}2c-d=1\\-c+2d=1\end{matrix}\right. {2cd=1c+2d=1每个方程式产生一条直线,两条直线相交可以解得 c = 2 / 3 c=2/3 c=2/3 d = 1 / 3 d=1/3 d=1/3

相关文章:

1.1 向量与线性组合

一、向量的基础知识 两个独立的数字 v 1 v_1 v1​ 和 v 2 v_2 v2​,将它们配对可以产生一个二维向量 v \boldsymbol{v} v: 列向量 v v [ v 1 v 2 ] v 1 v 的第一个分量 v 2 v 的第二个分量 \textbf{列向量}\,\boldsymbol v\kern 10pt\boldsymbol …...

django: You may need to add ‘localhost‘ to ALLOWED_HOSTS

参考:https://blog.csdn.net/qq_21744873/article/details/87857279 python manage.py runserver后页面访问失败,提示: DisallowedHost at /admin/ Invalid HTTP_HOST header: ‘localhost:8000’. You may need to add ‘localhost’ to ALLOWED_HOSTS…...

网络安全(黑客技术)—自学手册

1.网络安全是什么 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 2.网络安全市场 一、是市场需求量高; 二、则是发展相对成熟…...

【Vue】之Vuex的入门使用,取值,修改值,同异步请求处理---保姆级别教学

一,Vuex入门 1.1 什么是Vuex Vuex是一个专门为Vue.js应用程序开发的状态管理库。它用于管理应用程序中的共享状态,它采用集中式存储管理应用的所有组件的状态,使得状态的管理变得简单和可预测 官方解释:Vuex 是一个专为 Vue.js 应…...

ubuntu20.04 nerf Instant-ngp (下) 复现,自建数据集,导出mesh

参考链接 Ubuntu20.04复现instant-ngp,自建数据集,导出mesh_XINYU W的博客-CSDN博客 GitHub - NVlabs/instant-ngp: Instant neural graphics primitives: lightning fast NeRF and more youtube上的一个博主自建数据集 https://www.youtube.com/watch…...

【常见错误】SVN提交项目时,出现了这样的提示:“XXX“ is scheduled for addition, but is missing。

SVN提交项目时,出现了这样的提示:“XXX“ is scheduled for addition, but is missing。 原因是:之前用SVN提交过的文件/文件夹,被标记为"addition"状态,等待被加入到仓库。虽然你把这个文件删除了&#xf…...

深度学习基础知识 给模型的不同层 设置不同学习率

深度学习基础知识 给模型的不同层 设置不同学习率 1、使用预训练模型时,可能需要将2、学习率设置方式: 1、使用预训练模型时,可能需要将 (1)预训练好的 backbone 的 参数学习率设置为较小值, (2…...

【Python 零基础入门】 Numpy

【Python 零基础入门】第六课 Numpy 概述什么是 Numpy?Numpy 与 Python 数组的区别并发 vs 并行单线程 vs 多线程GILNumpy 在数据科学中的重要性 Numpy 安装Anaconda导包 ndarraynp.array 创建数组属性np.zeros 创建np.ones 创建 数组的切片和索引基本索引切片操作数组运算 常…...

1600*C. Circle of Monsters(贪心)

Problem - 1334C - Codeforces 解析: 对于某个怪兽,他的耗费为两种情况,要么直接用子弹打,要么被前面的怪兽炸,显然第二种情况耗费更少。 统计出所有怪兽的 max(0,a[ i ] - b[ i - 1 ]&#xff…...

国外互联网巨头常用的项目管理工具揭秘

大型互联网公司有涉及多个团队和利益相关者的复杂项目。为了保持项目的组织性和效率,他们中的许多人依赖于项目管理工具。这些工具有助于跟踪任务,与团队成员沟通,并监控进度。让我们来看看一些大型互联网公司正在使用的项目管理工具。 1、Zo…...

sql 注入(4), 盲注

sql 注入, 盲注 盲注适合在页面没有任何回显时使用. 测试页面有变化, 但是没有显示任何异常错误等信息. 情景: url: http://192.168.112.200/security/read.php?id1 服务器数据库名: learn一, boolean盲注 # 盲注可能需要一个一个字符去试探, 字符串处理函数经常会用到. 比…...

【string题解 C++】字符串相乘 | 翻转字符串III:翻转单词

字符串相乘 题面 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 给定两个以字符串形式表示的非负整数 num1 和 num2,返回 num1 和 num2 的乘积,它们的乘积也表示为字符串形式。 注意:不能使用任何内置的 BigIn…...

CentOS 7下JumpServer安装及配置(超详细版)

前言 Jumpserver是一种用于访问和管理远程设备的Web应用程序,通常用于对服务器进行安全访问。它基于SSH协议,提供了一个安全和可管理的环境来管理SSH访问。Jumpserver是基于Python开发的一款开源工具,其提供了强大的访问控制功能,…...

基于 ACK Fluid 的混合云优化数据访问(五):自动化跨区域中心数据分发

作者:车漾 前文回顾: 本系列将介绍如何基于 ACK Fluid 支持和优化混合云的数据访问场景,相关文章请参考: -基于 ACK Fluid 的混合云优化数据访问(一):场景与架构 -基于 ACK Fluid 的混合云优…...

sentinel的启动与运行

首先我们github下载sentinel Releases alibaba/Sentinel (github.com) 下载好了后输入命令让它运行即可,使用cmd窗口输入一下命令即可 java -Dserver.port8089 -jar sentinel-dashboard-1.8.6.jar 账号密码默认都是sentinel 启动成功后登录进去效果如下...

模拟量采集无线WiFi网络接口TCP Server, UDP, MQTT

● 4-20mA信号转换成标准Modbus TCP协议 ● 支持TCP Server, UDP, MQTT等通讯协议 ● 内置网页功能,可以通过网页查询数据 ● 宽电源供电范围:8 ~ 32VDC ● 可靠性高,编程方便,易于应用 ● 标准DIN35导轨安装,方便…...

五、OSPF动态路由实验

拓扑图: 基本ip的配置已经配置好了,接下来对两台路由器配置ospf协议,两台PC进行跨网段通讯 R1与R2构成单区域OSPF区域0,首先对R1进行配置 首先进入ospf 默认进程1,router id省略空缺,之后进入area 0区域&…...

系统架构设计:16 论软件开发过程RUP及其应用

目录 一 统一过程RUP 1 典型特点 2 四个阶段 (1)构思阶段(初始阶段/初启阶段)...

Gralloc ION DMABUF in Camera Display

目录 Background knowledge Introduction ia pa va and memory addressing Memory Addressing Page Frame Management Memory area management DMA IOVA and IOMMU Introduce DMABUF What is DMABUF DMABUF 关键概念 DMABUF APIS –The Exporter DMABUF APIS –The…...

【LVS】lvs的四种模式的区别是什么?

LVS中的DR模式、NAT模式、TUN模式和FANT模式是四种不同的负载均衡模式,它们之间的主要区别在于数据包转发方式和网络地址转换。 DR模式(Direct Routing):此模式通过改写请求报文的目标MAC地址,将请求发给真实服务器&a…...

OpenLayers 可视化之热力图

注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...