当前位置: 首页 > news >正文

服务运营 |摘要:学术+业界-近期前沿运筹医疗合作精选

图片

推文作者:李舒湉

编者按

本文归纳整理了近期INFORMS Journal on Applied Analytics中的相关业界合作研究。 这些研究成果体现了运筹学在医疗健康领域实践的效果。文中的学术+业界合作使用了不同的研究工具。第一篇文章使用仿真模型帮助诊所进行不同拥挤程度下诊所使用效率和服务质量间的关系,帮助优化诊所运营策略。第二和第三篇使用(混合)整数规划优化长期护理机构的菜单设计或人员调度。模型的结果体现出运筹学模型在医疗领域应用仍有较大的潜力和使用效果。

仿真+诊所运营

1. A Simulation Study for a Safe Reopening and Operation of the Trager Institute Optimal Aging Clinic During the COVID-19 Pandemic (https://pubsonline.informs.org/doi/10.1287/inte.2022.0032)

Reference: Sadri, Shahab, et al. "A Simulation Study for a Safe Reopening and Operation of the Trager Institute Optimal Aging Clinic During the COVID-19 Pandemic." INFORMS Journal on Applied Analytics (2023).

摘要:作者使用AnyLogic开发了一个离散事件仿真模型(Discrete-Event Simulation Model),以帮助位于肯塔基州路易斯维尔的Trager诊所确定COVID-19大流行期间的安全重新开放策略及COVID-19后的运营策略。该模型研究了多个人群的移动(例如,医疗提供者、导航员、患者、员工)以及诊所主要和辅助服务的运营。主要目标是确保在COVID-19限制措施实施期间诊所的安全运营,最大可能的提高诊所利用率。该模型模拟了诊所内人员的移动(例如,员工开会,午餐,使用卫生间等),监控了四个常见区域(诊所内的主要楼道、地下走廊、楼梯和电梯)的拥堵程度,并识别了一天中的高峰时段。与现有的其他模型不同,本文提出的仿真模型还考虑了超额预订(Overbook)和远程医疗(Telemedicine)。作者考虑不同的远程医疗和超额预定情况,进行了10种不同情景的仿真实验,对所有情景的比较基于利用率和患者平均等待时间两个标准进行,最终,作者通过帕累托曲线方便诊所管理者进行明智决策。

混合整数规划+菜单设计

2. Menu Engineering for Continuing Care Senior Living Facilities with Captive Dining Patrons (https://pubsonline.informs.org/doi/abs/10.1287/inte.2022.1140)

Reference: Kulturel-Konak, Sadan, et al. "Menu engineering for continuing care senior living facilities with captive dining patrons." INFORMS Journal on Applied Analytics 53.3 (2023): 218-239.

摘要:长期护理设施(Continuing Care Facilities)的食物菜单制定是一个涉及到多个利益相关方的复杂决策问题,需要同时兼顾(1)食物营养(2)顾客喜好(3)运营成本等多方面的要求。作者建立了一个混合整数线性规划来解决这个复杂、庞大和多目标优化问题。研究者采访了多个利益相关方,确定了他们的目标和约束。模型的决策包括以下几个方面:(1)确定某日的餐食中包含的食物(2)确定不同饮食类型中的每日菜单(3)每日营养摄入量的偏差 。模型的约束考虑了包括服务机构的供应能力,营养需求(每个种类的食品的每日最低/最高摄入剂量)和菜单的多样性等。在求解这个混合整数规划的过程中,作者使用了一个启发式方法(an iterative greedy heuristic)加快求解效率。

混合整数规划+护士排班

3. Optimization Helps Scheduling Nursing Staff at the Long-Term Care Homes of the City of Toronto (https://pubsonline.informs.org/doi/abs/10.1287/inte.2022.1132)

Reference: Anderson, Manion, et al. "Optimization helps scheduling nursing staff at the long-term care homes of the city of Toronto." INFORMS Journal on Applied Analytics 53.2 (2023): 133-154.

摘要:研究者与多伦多市长期护理和服务部门合作,(LTCH&S),开发了一种基于电子表格的排班工具来优化护士排班。具体而言,作者设计了一个分层优化模型 ,在最大化满足需求的同时生成一个护士偏好分数最高的可行排班方案。具体来说, 作者使用整数规划来解决护士排班问题。模型的目标函数是(1)最大化满足护士偏好(2)最大化满足长期护理机构的人员需求;模型的约束主要包括护士的时间可行性,护士的工作时间限制等。模型的求解过程主要分为三个阶段,第一和第二阶段分别求解两个目标函数不同的整数规划模型,第三阶段使用一个启发式方法来生成可行解。基于所提出模型开发的排班工具在多伦多的一家具有391张床位的长期护理机构中得到了实施。与传统的手工方法相比,该工具允许护理经理在短短几分钟内生成可行的排班,而传统方法可能需要数十个小时。此外,这些排班成功考虑了护士的偏好,平均而言,分配的班次中有超过94%被评为最喜欢的班次。

参考文献

  1. Sadri, Shahab, et al. "A Simulation Study for a Safe Reopening and Operation of the Trager Institute Optimal Aging Clinic During the COVID-19 Pandemic." INFORMS Journal on Applied Analytics (2023).

  2. Kulturel-Konak, Sadan, et al. "Menu engineering for continuing care senior living facilities with captive dining patrons." INFORMS Journal on Applied Analytics 53.3 (2023): 218-239.

  3. Anderson, Manion, et al. "Optimization helps scheduling nursing staff at the long-term care homes of the city of Toronto." INFORMS Journal on Applied Analytics 53.2 (2023): 133-154.

相关文章:

服务运营 |摘要:学术+业界-近期前沿运筹医疗合作精选

推文作者:李舒湉 编者按 本文归纳整理了近期INFORMS Journal on Applied Analytics中的相关业界合作研究。 这些研究成果体现了运筹学在医疗健康领域实践的效果。文中的学术业界合作使用了不同的研究工具。第一篇文章使用仿真模型帮助诊所进行不同拥挤程度下诊所使用…...

基于Dockerfile创建镜像

基于现有镜像创建 1.首先启动一个镜像,在容器里做修改 docker create -it centos:7 /bin/bash #常用选项: -m 说明信息; -a 作者信息; -p 生成过程中停止容器的运行。 2.然后将修改后的容器提交为新的镜像,需要使用…...

架构实战关键知识点

1.维基百科的“系统”定义:https://zh.wikipedia.org/wiki/%E7%B3%BB%E7%B5%B1 2.维基百科的“软件模块”定义:https://zh.wikipedia.org/wiki/%E8%BB%9F%E9%AB%9 4%E6%A8%A1%E7%B5%84 3.维基百科的“软件组件”定义:https://zh.wikipedia.or…...

M1Mac开启x86_64命令行archlinux虚拟机的最佳实践(qemu)

categories: [Tips] tags: Linux MacOS 写在前面 UTM 虚拟机可以卸载了, 命令行才是永远滴神, M1 MacBook Air 又能再战了! 之前一直用 UTM 的虚拟化开启 x86_64 的 Linux 虚拟机的, 但是我发现 UTM 好像不是必须的, 只要有qemu 就可以了, 下面就看看如何不通过图形界面前端…...

深度神经网络压缩与加速技术

// 深度神经网络是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。深度神经网络是一…...

系统架构设计:11 论湖仓一体架构及其应用

目录 一 湖仓一体(Lakehouse) 1 数据仓库 2 数据湖 3 数据仓库和数据湖 4 湖仓一体(Lakehouse)...

Linux系统编程_文件编程第1天:打开、写入、读取、关闭文件等编程

1. 文件编程概述(399.1) 内容超多: 文件系统原理及访问机制文件在内核中的管理机制什么是文件信息节点inode文件的共享文件权限,各种用户对其权限。。。。。。 应用为王,如: 账单游戏进度配置文件等 关心如…...

scapy构造ND报文

控制报文之:找邻居报文 什么是ND报文 ND报文是指网络中的 Neighbor Discovery(ND)控制报文。Neighbor Discovery 是 IPv6 网络中的一种协议,它用于管理网络节点之间的邻居关系、地址解析、路由缓存维护和自动配置等任务。ND 协议…...

c++设计模式之单例设计模式

💂 个人主页:[pp不会算法v](https://blog.csdn.net/weixin_73548574?spm1011.2415.3001.5343) 🤟 版权: 本文由【pp不会算法^v^】原创、在CSDN首发、需要转载请联系博主 💬 如果文章对你有帮助、欢迎关注、点赞、收藏(一键三连)和订阅专栏哦…...

App自动化测试环境搭建

目录 1、java jdk安装 2、node.js安装 3、安装模拟器安装 4、Android SDK 安装 5、Appium-Server安装 6、appium客户端安装  7、Appium-Python-Client安装 只做记录和注意点,详细内容不做解释 环境:winappium夜神模拟器python 需要用到的工具&a…...

win10搭建gtest测试环境+vs2019

首先是下载gtest,这个我已经放在了博客上方资源绑定处,这个适用于win10vs版本,关于liunx版本的不能用这个。 或者百度网盘链接: 链接:https://pan.baidu.com/s/15m62KAJ29vNe1mrmAcmehA 提取码:vfxz 下…...

【代码随想录】算法训练营 第二天 第一章 数组 Part 2

977. 有序数组的平方 题目 暴力解法 思路 原地更新所有数组元素为其平方数后&#xff0c;再使用sort函数排序&#xff0c;对vector使用sort函数时&#xff0c;两个参数分别是vector的起始元素和终止元素。 代码 class Solution { public:vector<int> sortedSquares(…...

在深度学习中,累计不同批次的损失估计总体损失

在深度学习中&#xff0c;累计不同批次的损失估计总体损失 在深度学习训练模型的过程中&#xff0c;通常会通过计算不同批次间的损失和&#xff0c;当作模型在这个训练集上的总体损失&#xff0c;这种做法是否具有可行性呢&#xff1f; 什么是总体损失? 总体损失是计算模型在…...

论文导读|八月下旬Operations Research文章精选:定价问题专题

编者按&#xff1a; ​ ​在“ Operations Research论文精选”中&#xff0c;我们有主题、有针对性地选择了Operations Research中一些有趣的文章&#xff0c;不仅对文章的内容进行了概括与点评&#xff0c;而且也对文章的结构进行了梳理&#xff0c;旨在激发广大读者的阅读兴…...

(三)Apache log4net™ 手册 -演示

0、引言 在开始本文之前&#xff0c;推荐您首先阅读 Apache log4net™ 手册中有关 介绍 与 配置 的相关内容。本文将通过实践分别为您演示如何使用 Visual Studio 2022 在 .NET Framework 项目和 .NET 项目下配置并使用 Log4Net。 1、为 .NET Framework 项目配置 Log4Net 1.1…...

VScode远程root权限调试

尝试诸多办法无法解决的情况下&#xff0c;允许远程登陆用户直接以root身份登录 编辑sshd_config文件 sudo vim /etc/ssh/sshd_config 激活配置 注释掉PermitRootLogin without-password&#xff0c;即#PermitRootLogin without-password 增加一行&#xff1a;PermitRootLo…...

【ARM CoreLink 系列 7 -- TZC-400控制器简介】

文章目录 背景介绍1.1 TZC-400 简介1.2 TZC-400 使用示例1.3 TZC-400 interfaces1.3.1 FPID1.3.2 NSAID Regionregion 检查规则 1.4 Features1.5 Register summary1.6 TZC-400和TZPC和TZASC区别 背景介绍 为了确保内存能够正确识别总线的信号控制位&#xff0c;新增一个TrustZ…...

【C++】-c++11的知识点(中)--lambda表达式,可变模板参数以及包装类(bind绑定)

&#x1f496;作者&#xff1a;小树苗渴望变成参天大树&#x1f388; &#x1f389;作者宣言&#xff1a;认真写好每一篇博客&#x1f4a4; &#x1f38a;作者gitee:gitee✨ &#x1f49e;作者专栏&#xff1a;C语言,数据结构初阶,Linux,C 动态规划算法&#x1f384; 如 果 你 …...

浅析倾斜摄影三维模型(3D)几何坐标精度偏差的几个因素

浅析倾斜摄影三维模型&#xff08;3D&#xff09;几何坐标精度偏差的几个因素 倾斜摄影是一种通过倾斜角度较大的相机拍摄建筑物、地形等场景&#xff0c;从而生成高精度的三维模型的技术。然而&#xff0c;在进行倾斜摄影操作时&#xff0c;由于多种因素的影响&#xff0c;导致…...

【广州华锐互动】智轨列车AR互动教学系统

智轨列车&#xff0c;也被称为路面电车或拖电车&#xff0c;是一种公共交通工具&#xff0c;它在城市的街头巷尾提供了一种有效、环保的出行方式。智轨列车的概念已经存在了很长时间&#xff0c;但是随着科技的发展&#xff0c;我们现在可以更好地理解和欣赏它。通过使用增强现…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...