当前位置: 首页 > news >正文

Meta开源数字水印Stable Signature,极大增强生成式AI安全

全球社交、科技巨头Meta(Facebook、Instagram等母公司)在官网宣布,开源数字水印产品Stable Signature,并公开论文。

据悉,Stable Signature是由Meta和INRIA(法国国家信息与自动化研究所)联合开发而成,可将数字水印直接嵌入到AI自动生成的图片中,防止其非法用途。

而数字水印也是目前增强生成式AI安全的重要手段之一,微软、谷歌等科技巨头已经在产品中使用。

Stable Signature生成的数字水印不受裁剪、压缩、改变颜色等破坏性操作影响,能追溯到图片的初始来源,可应用于扩散、生成对抗网络等模型,例如,著名文生图开源项目Stable Diffusion。

开源地址:https://github.com/facebookresearch/stable_signature

论文地址:https://arxiv.org/abs/2303.15435
在这里插入图片描述

Stable Signature技术原理

Stable Signature的技术原理并不复杂,开发人员用Alice训练了一个主生成模型并进行了微调,以确定Bob给定的水印,用于识别AI图片的版本、公司、用户、特征等属性。

Bob用于接收不同的扩散模型版本并生成图片,并携带水印。而这些水印可以由Alice或第三方AI进行分析,以查看图像是否由AI生成。

在这里插入图片描述

为了实现上述目标,开发人员使用了两大步骤来完成。

1)训练两个卷积神经网络。一种将图像和随机消息编码为水印图像,另一种则从水印图像的增强版本中提取消息,目的是使编码和提取的消息匹配。训练完成后,只保留水印提取器。

2)对生成模型的潜在解码器进行微调以生成包含固定签名的图像。在此微调过程中,会对批量图像进行编码、解码和优化,以最大限度地减少提取的消息与目标消息之间的差异,并保持感知图像质量。

这种优化过程快速有效,只需要小批量和很短的时间即可获得高质量的结果。

在这里插入图片描述

Stable Signature性能评估

在性能评估过程中,开发人员发现Stable Signature不受裁剪、压缩、改变颜色等破坏性操作影响,同时在被动检测方面有两大技术优势。

1)可以控制并减少误报的情况:误报是指我们将人类制作的图片,误认为是AI生成的图片。鉴于在线共享的非AI生成图片的普遍性,这一点至关重要。

例如,最有效的现有检测方法可以发现大约50%的编辑过的生成图片,但仍然产生大约1/100的误报率。

在这里插入图片描述

换句话说,在一个每天收到10亿张图片的用户生成内容平台上,为了仅检测到一半的生成图片,大约有1000万张图片会被错误地标记。

而Stable Signature 可以实现10-10 的误报率(可以设置为特定的期望值),提供高精准图片检测。

在这里插入图片描述

2)Stable Signature的水印方法,允许用户追踪同一模型的不同版本的图片,这种能力对于识别AI图片非常重要。
在这里插入图片描述

Meta表示,Midjourney、Stable Difusion等文本生成图片生成式AI产品非常火爆,已经被大量用户应用在各种业务场景。但也有很多人将其使用在非法用途,例如,通过Midjourney生成一张名人的合成照片,然后用于新闻造谣。

通过Stable Signature将数字水印嵌入到AI图片中,可极大避免此类事件的发生。

本文素材来源Meta官网,如有侵权请联系删除

相关文章:

Meta开源数字水印Stable Signature,极大增强生成式AI安全

全球社交、科技巨头Meta(Facebook、Instagram等母公司)在官网宣布,开源数字水印产品Stable Signature,并公开论文。 据悉,Stable Signature是由Meta和INRIA(法国国家信息与自动化研究所)联合开…...

python实现分词器

在Python中实现分词有很多方法,具体取决于你的应用场景和数据。下面我会介绍一种常用的分词库——jieba。如果你的数据是英文,你也可以使用nltk库。 中文分词 使用jieba进行中文分词: 首先,你需要安装jieba库。如果还未安装&am…...

第五十二章 学习常用技能 - Global 映射

文章目录 第五十二章 学习常用技能定义数据库定义命名空间Global映射 第五十二章 学习常用技能 定义数据库 创建本地数据库: 登录管理门户。选择系统管理 > 配置 > 系统配置 > 本地数据库。选择创建新数据库以打开数据库向导。输入新数据库的以下信息&a…...

vue实现瀑布流

1、在 src 目录下创建 component文件夹&#xff0c;在文件夹中创建 vue文件。 2、在 Vue文件中写入以下内容 <div class"pubu"><div class"left"><div class"pubu-item" v-for"item in left" :key"item.id"…...

【虹科干货】Redis Enterprise 自动分层技术:大数据集高性能解决方案

越来越多的应用程序依赖于庞大的数据集合&#xff0c;而这些应用程序必须快速响应。借助自动分层&#xff0c;Redis Enterprise 7.2 帮助开发人员轻松创建超快的应用程序。何乐而不为&#xff1f; Redis将数据存储在内存中&#xff0c;因此应用程序能以最快的速度检索和处理数…...

代码随想录训练营二刷第五十四天 | 300.最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组

代码随想录训练营二刷第五十四天 | 300.最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组 一、300.最长递增子序列 题目链接&#xff1a;https://leetcode.cn/problems/longest-increasing-subsequence/ 思路&#xff1a;定义dp[i]表示从0到i的闭区间的最长子序列长…...

LeetCode 2562. 找出数组的串联值【数组,相向双指针】1259

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…...

SpringBoot使用的时间与空间计量单位

SpringBoot支持JDK8提供的时间与空间计量单位 //时间单位DurationUnit(ChronoUnit.MINUTES)private Duration serverTimeOut;//存储空间单位DataSizeUnit(DataUnit.MEGABYTES)private DataSize dataSize; 在springboot中的具体使用&#xff1a; Component Data ConfigurationPr…...

【使用 TensorFlow 2】02/3 使用 Lambda 层创建自定义激活函数

一、说明 TensorFlow 2发布已经接近2年时间&#xff0c;不仅继承了Keras快速上手和易于使用的特性&#xff0c;同时还扩展了原有Keras所不支持的分布式训练的特性。3大设计原则&#xff1a;简化概念&#xff0c;海纳百川&#xff0c;构建生态.这是本系列的第三部分&#xff0c;…...

docker--使用docker login 报错解决方案

我们在本地使用 docker login 命令登录时报错&#xff0c;可以尝试一下先 docker logout 命令退出登录后&#xff0c;在使用 docker login命令进行登录操作&#xff1b; docker logout...

leetcode oj

150. 逆波兰表达式求值 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a;定义一个名为 Solution 的类&#xff0c;并在其中定义了一个名为 evalRPN 的公共函数。这个函数接受一个由字符串组成的向量 tokens 作为输入&#xff0c;并返回一个整数。 在代码中&#xff0…...

黑马点评-05缓存穿透问题及其解决方案,缓存空字符串或使用布隆过滤器

缓存穿透问题(缓存空) 缓存穿透的解决方案 缓存穿透(数据穿透缓存直击数据库): 缓存穿透是指客户端请求访问缓存中和数据库中都不存在的数据,此时缓存永远不会生效并且用户的请求都会打到数据库 数据库能够承载的并发不如Redis这么高&#xff0c;如果大量的请求同时访问这种…...

Flink之窗口聚合算子

1.窗口聚合算子 在Flink中窗口聚合算子主要分类两类 滚动聚合算子(增量聚合)全窗口聚合算子(全量聚合) 1.1 滚动聚合算子 滚动聚合算子一次只处理一条数据,通过算子中的累加器对聚合结果进行更新,当窗口触发时再从累加器中取结果数据,一般使用算子如下: aggregatemaxmaxBy…...

K8S:Rancher管理 Kubernetes 集群

文章目录 一.Rancher 简介1.Rancher概念2.Rancher 和 k8s 的区别 二.Rancher 安装及配置1.安装 rancher2.登录 Rancher 平台3.Rancher 管理已存在的 k8s 集群4.Rancher 部署监控系统5.使用 Rancher 仪表盘管理 k8s 集群 三.拓展1.Rancher和kubesphere相比较2.K3S和K8S相比较 一…...

后台运行python程序并查看运行的python 进程

nohup python -u Job.py > log.log 2>&1 &说明&#xff1a; 末尾的“&”&#xff1a;表示后台运行程序 “nohup” &#xff1a;保证程序不被挂起 “python”&#xff1a;是执行python代码的命令 “-u”&#xff1a;表示不启用缓存&#xff0c;实时输出打印…...

树莓派部署.net core网站程序

1、发布你的项目 使用mobaxterm上传程序 回到mobaxterm,f进入目录输入&#xff1a; cd webpublish 运行程序&#xff1a;dotnet WebApplication1.dll 访问地址为&#xff1a;http://localhost:5000,尝访问如下&#xff1a; 已经出现 返回的json&#xff0c;证明是可以访问的…...

淘宝商品评论数据接口,淘宝商品评论API接口

淘宝商品评论数据接口可以通过淘宝开放平台API获取。 通过构建合理的请求URL&#xff0c;可以向淘宝服务器发起HTTP请求&#xff0c;获取商品评论数据。接口返回的数据一般为JSON格式&#xff0c;包含了商品的各种评价信息。获取到商品评论数据后&#xff0c;可以对其进行处理…...

455. 分发饼干

假设你是一位很棒的家长&#xff0c;想要给你的孩子们一些小饼干。但是&#xff0c;每个孩子最多只能给一块饼干。 对每个孩子 i&#xff0c;都有一个胃口值 g[i]&#xff0c;这是能让孩子们满足胃口的饼干的最小尺寸&#xff1b;并且每块饼干 j&#xff0c;都有一个尺寸 s[j] …...

GEE:数据预处理的细节(处理顺序。比如, select() 和 filter() 要优先于 map())

作者:CSDN @ _养乐多_ 大家在数据预处理的时候,是不是随意进行处理,并没有考虑 Google Earth Engine(GEE)性能的问题?比如选择数据集的时候,先执行map函数,再按时间选择数据?不同的处理顺序会导致不同的计算成本。 因此,本文将探讨如何在 GEE 中筛选和选择数据集合…...

【AHK】任务栏调节音量/边缘滚动调节/边缘触发

通过ahk实现类似mouseinc的边缘滚动调节音量的功能&#xff0c;有两个思路。 任务栏调节音量 #If MouseIsOver("ahk_class Shell_TrayWnd") WheelUp::Send {Volume_Up} WheelDown::Send {Volume_Down} return #IfMouseIsOver(WinTitle) {MouseGetPos,,, Winreturn …...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

Unity VR/MR开发-VR开发与传统3D开发的差异

视频讲解链接&#xff1a;【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...

QT开发技术【ffmpeg + QAudioOutput】音乐播放器

一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下&#xff0c;音视频内容犹如璀璨繁星&#xff0c;点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频&#xff0c;到在线课堂中知识渊博的专家授课&#xff0c;再到影视平台上扣人心弦的高清大片&#xff0c;音…...

OCR MLLM Evaluation

为什么需要评测体系&#xff1f;——背景与矛盾 ​​ 能干的事&#xff1a;​​ 看清楚发票、身份证上的字&#xff08;准确率>90%&#xff09;&#xff0c;速度飞快&#xff08;眨眼间完成&#xff09;。​​干不了的事&#xff1a;​​ 碰到复杂表格&#xff08;合并单元…...