当前位置: 首页 > news >正文

chatGLM2-6B模型LoRA微调数据集实现大模型的分类任务

【TOC】

1.chatglm介绍

ChatGLM 模型是由清华大学开源的、支持中英双语问答的对话语言模型,并针对中文进行了优化。该模型基于 General Language Model(GLM)架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署。

ChatGLM 具备以下特点:

充分的中英双语预训练:ChatGLM 在 1:1 比例的中英语料上训练了 1T 的 token 量,兼具双语能力。
优化的模型架构和大小:修正了二维 RoPE 位置编码实现。6B(62 亿)的参数大小,也使得研究者和个人开发者自己微调和部署 ChatGLM 成为可能。
较低的部署门槛:FP16 半精度下,ChatGLM 需要至少 13 GB 的显存进行推理,结合模型量化技术,这一需求可以进一步降低到 10GB(INT8) 和 6GB(INT4),使得 ChatGLM 可以部署在消费级显卡上。
更长的序列长度:ChatGLM 序列长度达 2048,支持更长对话和应用。
ChatGLM 微调介绍
模型微调主要分为 Full Fine-Tune 和 PEFT(Performance-Efficient Fine-Tune),前者模型全部参数都会进行更新,训练时间较长,训练资源较大;而后者会冻结大部分参数、微调训练网络结构,常见的方式是 LoRA 和 P-Tuning v2。对于 ChatGLM 来说,选择 P-Tuning v2 进行模型微调,其网络结构如下:在 Transformers 的所有层均增加 Prompt/Prefix。</

相关文章:

chatGLM2-6B模型LoRA微调数据集实现大模型的分类任务

【TOC】 1.chatglm介绍 ChatGLM 模型是由清华大学开源的、支持中英双语问答的对话语言模型,并针对中文进行了优化。该模型基于 General Language Model(GLM)架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署。 ChatGLM 具备以下特点: 充…...

Elasticsearch6实践

目录 目录 一、需求 二、ES索引设计 三、页面搜索条件 四、ES的分页搜索DSL语句 五、其他 一、需求 公告列表&#xff0c;需要支持以下搜索 1、根据文本输入&#xff0c;模糊搜索公告标题和公告正文。 2、支持公告类型搜索&#xff0c;单选 3、支持根据公告所在省市区搜…...

云原生Kubernetes:K8S集群版本升级(v1.20.6 - v1.20.15)

目录 一、理论 1.K8S集群升级 2.集群概况 3.升级集群 4.验证集群 二、实验 1.升级集群 2.验证集群 三、问题 1.给node1节点打污点报错 一、理论 1.K8S集群升级 &#xff08;1&#xff09;概念 搭建K8S集群的方式有很多种&#xff0c;比如二进制&#xff0c;kubeadm…...

毅速丨3D打印随形水路模具日常如何保养

3D打印随形水路的蜿蜒曲折甚至细微水路&#xff0c;使得其容易发生堵塞并难以清洗&#xff0c;一旦堵塞将对生产带来不小的影响。事实上&#xff0c;堵塞的发生是逐步发展的&#xff0c;所以在生产过程中应注意监控&#xff0c;一旦发现冷却效果下降应及时检查。以下是一些防患…...

尚品甄选2023全新SpringBoot+SpringCloud企业级微服务项目

最适合新手入门的SpringBootSpringCloud企业级微服务项目来啦&#xff01;如果你已经学习了Java基础、SSM框架、SpringBoot、SpringCloud&#xff0c;想找一个项目来实战练习&#xff1b;或者你刚刚入行&#xff0c;需要可以写到简历中的微服务架构项目&#xff01; 项目采用前…...

204、RabbitMQ 之 使用 topic 类型的 Exchange 实现通配符路由

目录 ★ 使用topic实现通配符路由代码演示topic通配符类型的Exchange代码演示:ConstantUtilConnectionUtilProducerConsumer01执行结果生产者消费者01消费者02 完整代码&#xff1a;ConstantUtilConnectionUtilProducerConsumer01Consumer02pom.xml ★ 使用topic实现通配符路由…...

qq视频录制教程,让你的视频更加精彩

“qq视频可以录制吗&#xff1f;浏览qq的时候发现一段有趣的视频&#xff0c;点击下载却一直显示失败&#xff0c;朋友叫我把视频录制下来&#xff0c;但是我不知道怎么操作&#xff0c;想问问大家&#xff0c;有没有办法录制qq的视频。” 在信息化的时代&#xff0c;通过视频…...

(滑动窗口) 76. 最小覆盖子串 ——【Leetcode每日一题】

❓76. 最小覆盖子串 难度&#xff1a;困难 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串&#xff0c;则返回空字符串 "" 。 注意&#xff1a; 对于 t 中重复字符&#xff0c;我们寻找的子字符串…...

grep批量筛选指定目录下的所有日志并写入文件内

背景&#xff1a;在指定目录下&#xff0c;该目录下有上百个日志文件&#xff0c;这些文件以.log结尾 需求&#xff1a;遍历这些日志文件&#xff0c;对每个日志文件进行grep筛选&#xff0c;筛选出包含namexxx和 "server_port":"8088"的内容&#xff0c;并…...

JVM第三讲:JVM 基础-字节码的增强技术详解

JVM 基础-字节码的增强技术详解 本文是JVM第三讲&#xff0c;JVM 基础-字节码的增强技术。在上文中&#xff0c;着重介绍了字节码的结构&#xff0c;这为我们了解字节码增强技术的实现打下了基础。字节码增强技术就是一类对现有字节码进行修改或者动态生成全新字节码文件的技术…...

JWT前后端分离在项目中的应用

14天阅读挑战赛当你累了&#xff0c;要学会休息&#xff0c;而不是放弃&#xff01; 目录 一、JWT简介 1.1 什么是JWT 1.2 为什么要使用JWT&#xff0c;与session的区别 1.3 JWT组成及工作原理和流程 二、JWT工具类解析 2.1 生成JWT 2.2 解析oldJwt 2.3 复制JWT并延时…...

系统架构师备考倒计时23天(每日知识点)Redis篇

Redis篇 1.Redis与Memcache能力对比 工作MemCacheRedis数据类型简单 key/value 结构丰富的数据结构持久性不支持支持分布式存储客户端哈希分片/一致性哈希多种方式&#xff0c;主从、Sentinel、Cluster 等多线程支持支持支持(Redis5.0及以前版本不支持)内存管理私有内存池/内…...

WIN11系统设置重启与睡眠唤醒后自动拨号

文章目录 1. win x快捷键后选择计算机管理2. 编辑名称3. 选择计算机启动时4. 启动程序5. 输入脚本6. 勾选选项7. 填写配置8. 新建触发器9. 设置触发器10. 确定之后完成创建 1. win x快捷键后选择计算机管理 在任务计划程序中创建基本任务 2. 编辑名称 3. 选择计算机启动时 4…...

【【萌新的SOC学习之AXI-DMA环路测试】】

萌新的SOC学习之AXI-DMA环路测试 AXI DMA环路测试 DMA(Direct Memory Access&#xff0c;直接存储器访问)是计算机科学中的一种内存访问技术。它允许某些计算机内部的硬件子系统可以独立地直接读写系统内存&#xff0c;而不需中央处理器&#xff08;CPU&#xff09;介入处理。…...

Lua教程

Lua教程(简单易懂)-CSDN博客 博客相关解释&#xff1a; 5、循环 a {"a", "b"}for i, v in ipairs(a) doprint(i, v)end 代码创建了一个名为 a 的数组&#xff0c;并使用 ipairs 迭代这个数组的元素。运行结果显示了每个元素的索引&#xff08;下标&am…...

《Node.js+Express+MongoDB+Vue.js全栈开发实战》简介

今天介绍的这本书是《Node.jsExpressMongoDBVue.js全栈开发实战》。该书由清华大学出版社于2023年1月出版 外观 从书名故名思议&#xff0c;就是基于Node.jsExpressMongoDBVue.js来实现企业级应用全栈开发。 封面风格比较简约&#xff0c;插图是一张类似于罗马时代战车形象&…...

多输入多输出 | MATLAB实现CNN-BiGRU-Attention卷积神经网络-双向门控循环单元结合SE注意力机制的多输入多输出预测

多输入多输出 | MATLAB实现CNN-BiGRU-Attention卷积神经网络-双向门控循环单元结合SE注意力机制的多输入多输出预测 目录 多输入多输出 | MATLAB实现CNN-BiGRU-Attention卷积神经网络-双向门控循环单元结合SE注意力机制的多输入多输出预测预测效果基本介绍程序设计往期精彩参考…...

阿里云r7服务器内存型CPU采用

阿里云服务器ECS内存型r7实例是第七代内存型实例规格族&#xff0c;CPU采用第三代Intel Xeon可扩展处理器&#xff08;Ice Lake&#xff09;&#xff0c;基频2.7 GHz&#xff0c;全核睿频3.5 GHz&#xff0c;计算性能稳定&#xff0c;CPU内存比1:8&#xff0c;2核16G起步&#…...

Godot2D角色导航-自动寻路教程(Godot设置导航代理的目标位置)

文章目录 创建导航NavigationAgent2D节点设置目标位置其他文章 创建导航 首先&#xff0c;创建一个基本的场景&#xff0c;下面的文章讲解了如何创建一个基本的导航场景&#xff0c;点击如下链接前往该文章&#xff1a; Godot2D角色导航-自动寻路教程 NavigationAgent2D节点 …...

R语言实现向量自回归和误差修正模型——附实战代码

大家好&#xff0c;我是带我去滑雪&#xff01; 向量自回归&#xff08;VAR&#xff09;模型和误差修正模型&#xff08;ECM&#xff09;是时间序列分析中常用的两种模型&#xff0c;它们用于研究多个变量之间的动态关系。VAR 模型适用于研究多个相关变量之间的相互影响和动态关…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...