当前位置: 首页 > news >正文

R语言实现向量自回归和误差修正模型——附实战代码

      大家好,我是带我去滑雪!

      向量自回归(VAR)模型和误差修正模型(ECM)是时间序列分析中常用的两种模型,它们用于研究多个变量之间的动态关系。VAR 模型适用于研究多个相关变量之间的相互影响和动态关系,特别是在没有明确的因果关系方向时。ECM 是基于向量自回归模型的一种扩展,旨在处理协整关系。协整关系表示变量之间存在长期均衡关系。在实践中,研究人员通常使用单位根检验(如ADF检验)来检查时间序列是否平稳,然后使用协整检验来确定是否存在协整关系。如果存在协整关系,就可以考虑使用 VAR 模型和 ECM 模型来分析变量之间的关系。这些模型在经济学、金融学和其他领域中广泛应用,以揭示变量之间的动态性质和长期均衡关系。

一、向量自回归模型

(1)平稳VAR多变量原理

       平稳向量自回归(VAR)模型是一种多变量时间序列分析方法,用于研究变量之间的动态关系。在VAR模型中,所有的变量被同时建模,每一个变量都被其它所有变量的滞后值所影响。这种模型假设所有的变量都是平稳的,也就是说,它们的均值和方差在时间上是稳定的。总的来说,VAR模型的核心思想是将多个变量之间的关系纳入一个系统方程中,通过时间序列的历史数据来估计这些关系,从而实现对未来变量值的预测和分析。VAR模型的基本原理可以总结如下:

  1. 平稳性假设: VAR模型假设所涉及的所有变量都是平稳的。平稳性是指变量的统计特性,如均值和方差,在时间上保持不变。如果变量不是平稳的,通常需要进行差分操作,直到得到平稳的数据。

  2. 滞后阶数选择: 在构建VAR模型时,需要选择滞后阶数(lag order),表示当前时刻的变量值受多少时期之前的变量值影响。选择适当的滞后阶数通常需要借助信息准则(如AIC或BIC)来进行。

  3. 模型参数估计: 一旦选择了滞后阶数,就可以用最小二乘法(OLS)或极大似然法来估计VAR模型的参数。这些参数代表了各个变量之间的线性关系。

  4. 脉冲响应函数和方差分解: 通过VAR模型,可以得到系统中各个变量对于其它变量脉冲(冲击)的响应模式。脉冲响应函数显示了一个变量在受到一个单位冲击时的反应情况。方差分解则能够量化各个变量在系统变动中所占的比重。

  5. 预测和融合: 一旦VAR模型被估计出来,就可以用来进行未来数值的预测。此外,VAR模型还可以与其他模型或分析方法融合,以提高预测的准确性。

(2)下载并整理数据,为构建VAR模型做准备

       下载数据可以查看前面的博客(http://t.csdnimg.cn/tdjvG),本期使用getSymbls函数从网络上下载IBM从2015年1月1日到2017年1月18日的股票数据,数据包含IBM的开盘价、收盘价、成交量等数据。

install.packages("TTR")
library(quantmod)
IBM.dat = getSymbols("IBM", from="2015-01-01",to="2017-01-18", adjust = T, auto.assign = FALSE)
head(IBM.dat)
tail(IBM.dat)
Return = diff(log(IBM.dat[, 4]))*100
volume = log(IBM.dat[, 5])
plot(Return, xlab = "dates", main = "Time series of IBM returns")
plot(volume, xlab = "dates", main = "Time series of IBM volume")
dat0=cbind(Return, volume)
head(dat0)
dat=na.omit(dat0)

输出结果:

(3)估计VAR(p)

library(vars)
out.var=VAR(dat, p=1, type="const", season=NULL, exogen=NULL, lag.max=NULL)
options(digits=4)
coef(out.var)

输出结果:

$Return
               Estimate Std. Error         t value  Pr(>|t|)
Return.l    1  0.08745    0.04399   1.988    0.04737
volume.l   1 -1.11633    0.66518  -1.678    0.09391
const        5.59278        3.32232   1.683    0.09291

$volume
                   Estimate      Std. Error    t value      Pr(>|t|)
Return.l    1 0.007989   0.0002939    27.186   2.904e-101
volume.l   1 0.992436   0.0044435   223.347  0.000e+00
const         0.037821     0.0221934    1.704      8.896e-02

(4)Granger因果关系检验

causality(out.var, cause="Return", boot=TRUE, boot.runs=5000)

输出结果:

$Granger

    Granger causality H0: Return do not Granger-cause volume

data:  VAR object out.var
F-Test = 739, boot.runs = 5000, p-value <2e-16


$Instant

    H0: No instantaneous causality between: Return and volume

data:  VAR object out.var
Chi-squared = 76, df = 1, p-value <2e-16

       结果显示,拒绝原假设,认为报酬率是交易量的格兰杰原因。

(5)脉冲响应分析

output.irf=irf(out.var, impulse = "Vol", response = c("Ret","Vol"),boot=TRUE, boot.runs=1000)
output.irf
plot(output.irf) 

二、误差修正模型

      完整代码如下:

library(tsDyn)
lags <- vars::VARselect(dat, lag.max=25)$selection 
vecm.eg<-VECM(dat, lag=lags[3],include ="const", estim = "2OLS")
summary(vecm.eg)
summary(vecm.eg)$coefMat 
vecm.eg$model.specific$beta
vecm.jo<-VECM(dat, lag=lags[3], include ="const", estim = "ML")
summary(vecm.jo)
summary(vecm.jo)$coefMat
vecm.jo$model.specific$beta
library(urca)
cointest_eigen <- ca.jo(dat, K=lags[3], type="eigen", ecdet="const",spec="transitory")
summary(cointest_eigen)
cointest_trace <- ca.jo(dat, K=lags[3], type="trace", ecdet="const",spec="transitory")
summary(cointest_trace)

需要数据集的家人们可以去百度网盘(永久有效)获取:

链接:https://pan.baidu.com/s/1E59qYZuGhwlrx6gn4JJZTg?pwd=2138
提取码:2138 


更多优质内容持续发布中,请移步主页查看。

   点赞+关注,下次不迷路!

相关文章:

R语言实现向量自回归和误差修正模型——附实战代码

大家好&#xff0c;我是带我去滑雪&#xff01; 向量自回归&#xff08;VAR&#xff09;模型和误差修正模型&#xff08;ECM&#xff09;是时间序列分析中常用的两种模型&#xff0c;它们用于研究多个变量之间的动态关系。VAR 模型适用于研究多个相关变量之间的相互影响和动态关…...

原理:用UE5制作一个2D游戏

选中资产图片右键--Sprite Actions--Apply Paper2D Texture Settings 制作场景 把它丢到场景里&#xff0c;并把坐标归零 创建图块集tileset 打开新建的tile set&#xff0c;根据最小图块设置最小尺寸单元 选择需要的图块单元&#xff0c;add box 对新建的tile set右键创建til…...

【ARM 嵌入式 编译系列 11.3 -- GCC attribute packed noreturn constructor 介绍】

文章目录 GCC 的 __attribute__ 是一个编译器扩展特性,允许开发者在源代码中设置函数属性(function attributes)、变量属性(variable attributes)和类型属性(type attributes)。这些属性可以影响函数、变量或类型的行为。 以下是一些常见的 __attribute__ 属性: __at…...

主从Reactor高并发服务器

文章目录 Reactor模型的典型分类单Reactor单线程单Reactor多线程多Reactor多线程本项目中实现的主从Reactor One Thread One Loop各模型的优点与缺点 项目分解Reactor服务器模块BufferSocketChannelEpollerTimerWheelEventLoopAnyConnectionAcceptorLoopThreadLoopThreadPoolTc…...

文心一言Plugin实战来了,测试开发旅游攻略助手

刚刚过去的8月&#xff0c;百度WAVE SUMMIT 深度学习开发者大会上&#xff0c;重磅发布文心一言的五个原生插件&#xff1a;百度搜索、览卷文档&#xff08;基于文档的交互&#xff09;、E 言易图&#xff08;数据洞察图表生成&#xff09;、说图解画&#xff08;基于图片的交互…...

微服务13-Seata的四种分布式事务模式

文章目录 XA模式实现XA模式 AT模式AT模式的脏写问题&#xff08;对同数据并发写的问题&#xff09;其他事务不获取全局锁的一个情况&#xff08;AT模式写隔离的实现&#xff09;实现AT模式 TCC模式TCC实现我们怎么样去判断是否空回滚和业务悬挂&#xff1f;业务分析 Saga模式总…...

C结构体内定义结构体,不能直接赋值。

现像&#xff1a; 如下代码&#xff1a; 头文件&#xff1a; typedef struct aBlinkGpioPinOutAbst_{void (*initAsOutput)(void);void (*high)(void);void (*low)(void); }aBlinkGpioPinOutAbst;typedef struct aBlinkGpioAbst_{ #if GPIO_CONFIG_PA0 GPIO_CONFIG_AS_OUTPU…...

PHP遇见错误了看不懂?这些错误提示你必须搞懂

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏:《速学数据结构》 《C语言进阶篇》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 一、错误分类二、系统错误&#xff1a;2.1 编译错误2.2 致命错误2.3 警告错误2.4 通知错误 三、用户错误3.1 错…...

微信小程序备案流程操作详解

1、2023年9月1号小程序开始必须备案了,各位小程序商城只需要按流程自主去微信小程序后台操作即可; 2、对未上架的微信小程序,从2023年9月1号开始需先备案才能上架; 3、对存量已上架的小程序,需在2024年3月31号前完成备案即可。逾期未完成备案,平台将按照备案相关规定于…...

【100天精通Python】Day70:Python可视化_绘制不同类型的雷达图,示例+代码

目录 1. 基本雷达图 2. 多组数据的雷达图 3 交互式雷达地图 4 动态雷达图 0 雷达图概述 雷达图&#xff08;Radar Chart&#xff09;&#xff0c;也被称为蜘蛛图&#xff08;Spider Chart&#xff09;或星型图&#xff0c;是一种用于可视化多维数据的图表类型。雷达图通常由…...

KY258 日期累加

KY258 日期累加 int main() {int n 0; //样例个数cin >> n;//for循环处理n个样例for (int i 0; i < n; i){int y, m, d, num;int days[12] { 31,28,31,30,31,30,31,31,30,31,30,31 };//输入年月日 要加的天数cin >> y >> m >> d >>…...

基于CodeFormer实现图片模糊变清晰,去除马赛克等效果

前言 CodeFormer是一种基于AI技术深度学习的人脸复原模型&#xff0c;由南洋理工大学和商汤科技联合研究中心联合开发。该模型通过结合了VQGAN和Transformer等技术&#xff0c;可以通过提供模糊或马赛克图像来生成清晰的原始图像。可以实现老照片修复、照片马赛克修复、黑白照…...

Docker【部署 05】docker使用tensorflow-gpu安装及调用GPU踩坑记录

tensorflow-gpu安装及调用GPU踩坑记录 1.安装tensorflow-gpu2.Docker使用GPU2.1 Could not find cuda drivers2.2 was unable to find libcuda.so DSO2.3 Could not find TensorRT&&Cannot dlopen some GPU libraries2.4 Could not create cudnn handle: CUDNN_STATUS_…...

前后端分离中,前端请求和后端接收请求格式总结

get请求可以携带的参数 1&#xff09;前端&#xff1a;传统键值对(http:xx?a1&b1) <--> 后端&#xff1a;RequestParam("a") int a , RequestParam("b") int b 2&#xff09;前端&#xff1a;(http:xx/a/b) <--> 后端&#xff1a;Reque…...

pytorch的基本运算,是不是共享了内存,有没有维度变化

可以把PyTorch简单看成是Python的深度学习第三方库&#xff0c;在PyTorch中定义了适用于深度学习的基本数据结构——张量&#xff0c;以及张量的各类计算。其实也就相当于NumPy中定义的Array和对应的科学计算方法&#xff0c;正是这些基本数据类型和对应的方法函数&#xff0c;…...

Visual Studio 2022新建项目时没有ASP.NET项目

一、Visual Studio 2022新建项目时没有ASP.NET项目 1、打开VS开发工具&#xff0c;选择工具菜单&#xff0c;点击“获取工具和功能” 2、选择“ASP.NET和Web开发”和把其他项目模板&#xff08;早期版本&#xff09;勾选上安装即可...

nuiapp项目实战:导航栏动态切换效果实践案例树

测试软件的百忙之中去进行软件开发的工作&#xff0c;开展开发软件的工作事情&#xff0c;也真是繁忙至极点的了。 不到一刻钟的课程内容&#xff0c;个人用了三次去写串联的知识点&#xff0c;然后这是第三次&#xff0c;还是第四次了才完全写出来一个功能的效果。 一刻钟的功…...

【机器学习】集成学习(以随机森林为例)

文章目录 集成学习随机森林随机森林回归填补缺失值实例&#xff1a;随机森林在乳腺癌数据上的调参附录参数 集成学习 集成学习&#xff08;ensemble learning&#xff09;是时下非常流行的机器学习算法&#xff0c;它本身不是一个单独的机器学习算法&#xff0c;而是通过在数据…...

主机jvisualvm连接到tomcat服务器查看jvm状态

​使用JMX方式连接到tomcat&#xff0c;连接后能够查看前边的部分内容&#xff0c;但是不能查看Visual GC&#xff0c;显示不受此JVM支持&#xff0c; 对了&#xff0c;要显示Visual GC&#xff0c;首先要安装visualvm工具&#xff0c;具体安装方式就是根据自己的jdk版本下载…...

uniapp 自定义tabbar页面不刷新

最近在做自定义tabbar时&#xff0c;每次切换页面都要刷新&#xff0c;页面渲染很慢&#xff0c;需要实现切换页面不刷新问题。 结局思路&#xff0c;原生的tabbar切换页面时就不选新&#xff0c;用switchTab来跳转 1.pages.json中配置tabbar&#xff0c;如下,设置高度为0&am…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...