竞赛选题 深度学习OCR中文识别 - opencv python
文章目录
- 0 前言
- 1 课题背景
- 2 实现效果
- 3 文本区域检测网络-CTPN
- 4 文本识别网络-CRNN
- 5 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 **基于深度学习OCR中文识别系统 **
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:3分
- 创新点:4分
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 课题背景
在日常生产生活中有大量的文档资料以图片、PDF的方式留存,随着时间推移 往往难以检索和归类 ,文字识别(Optical Character
Recognition,OCR )是将图片、文档影像上的文字内容快速识别成为可编辑的文本的技术。
高性能文档OCR识别系统是基于深度学习技术,综合运用Tensorflow、CNN、Caffe
等多种深度学习训练框架,基于千万级大规模文字样本集训练完成的OCR引擎,与传统的模式识别的技术相比,深度学习技术支持更低质量的分辨率、抗干扰能力更强、适用的场景更复杂,文字的识别率更高。
本项目基于Tensorflow、keras/pytorch实现对自然场景的文字检测及OCR中文文字识别。
2 实现效果
公式检测
纯文字识别
3 文本区域检测网络-CTPN
对于复杂场景的文字识别,首先要定位文字的位置,即文字检测。
简介
CTPN是在ECCV
2016提出的一种文字检测算法。CTPN结合CNN与LSTM深度网络,能有效的检测出复杂场景的横向分布的文字,效果如图1,是目前比较好的文字检测算法。由于CTPN是从Faster
RCNN改进而来,本文默认读者熟悉CNN原理和Faster RCNN网络结构。
相关代码
def main(argv):pycaffe_dir = os.path.dirname(__file__)parser = argparse.ArgumentParser()# Required arguments: input and output.parser.add_argument("input_file",help="Input txt/csv filename. If .txt, must be list of filenames.\If .csv, must be comma-separated file with header\'filename, xmin, ymin, xmax, ymax'")parser.add_argument("output_file",help="Output h5/csv filename. Format depends on extension.")# Optional arguments.parser.add_argument("--model_def",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/deploy.prototxt.prototxt"),help="Model definition file.")parser.add_argument("--pretrained_model",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"),help="Trained model weights file.")parser.add_argument("--crop_mode",default="selective_search",choices=CROP_MODES,help="How to generate windows for detection.")parser.add_argument("--gpu",action='store_true',help="Switch for gpu computation.")parser.add_argument("--mean_file",default=os.path.join(pycaffe_dir,'caffe/imagenet/ilsvrc_2012_mean.npy'),help="Data set image mean of H x W x K dimensions (numpy array). " +"Set to '' for no mean subtraction.")parser.add_argument("--input_scale",type=float,help="Multiply input features by this scale to finish preprocessing.")parser.add_argument("--raw_scale",type=float,default=255.0,help="Multiply raw input by this scale before preprocessing.")parser.add_argument("--channel_swap",default='2,1,0',help="Order to permute input channels. The default converts " +"RGB -> BGR since BGR is the Caffe default by way of OpenCV.")parser.add_argument("--context_pad",type=int,default='16',help="Amount of surrounding context to collect in input window.")args = parser.parse_args()mean, channel_swap = None, Noneif args.mean_file:mean = np.load(args.mean_file)if mean.shape[1:] != (1, 1):mean = mean.mean(1).mean(1)if args.channel_swap:channel_swap = [int(s) for s in args.channel_swap.split(',')]if args.gpu:caffe.set_mode_gpu()print("GPU mode")else:caffe.set_mode_cpu()print("CPU mode")# Make detector.detector = caffe.Detector(args.model_def, args.pretrained_model, mean=mean,input_scale=args.input_scale, raw_scale=args.raw_scale,channel_swap=channel_swap,context_pad=args.context_pad)# Load input.t = time.time()print("Loading input...")if args.input_file.lower().endswith('txt'):with open(args.input_file) as f:inputs = [_.strip() for _ in f.readlines()]elif args.input_file.lower().endswith('csv'):inputs = pd.read_csv(args.input_file, sep=',', dtype={'filename': str})inputs.set_index('filename', inplace=True)else:raise Exception("Unknown input file type: not in txt or csv.")# Detect.if args.crop_mode == 'list':# Unpack sequence of (image filename, windows).images_windows = [(ix, inputs.iloc[np.where(inputs.index == ix)][COORD_COLS].values)for ix in inputs.index.unique()]detections = detector.detect_windows(images_windows)else:detections = detector.detect_selective_search(inputs)print("Processed {} windows in {:.3f} s.".format(len(detections),time.time() - t))# Collect into dataframe with labeled fields.df = pd.DataFrame(detections)df.set_index('filename', inplace=True)df[COORD_COLS] = pd.DataFrame(data=np.vstack(df['window']), index=df.index, columns=COORD_COLS)del(df['window'])# Save results.t = time.time()if args.output_file.lower().endswith('csv'):# csv# Enumerate the class probabilities.class_cols = ['class{}'.format(x) for x in range(NUM_OUTPUT)]df[class_cols] = pd.DataFrame(data=np.vstack(df['feat']), index=df.index, columns=class_cols)df.to_csv(args.output_file, cols=COORD_COLS + class_cols)else:# h5df.to_hdf(args.output_file, 'df', mode='w')print("Saved to {} in {:.3f} s.".format(args.output_file,time.time() - t))
CTPN网络结构
4 文本识别网络-CRNN
CRNN 介绍
CRNN 全称为 Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用
整个CRNN网络结构包含三部分,从下到上依次为:
- CNN(卷积层),使用深度CNN,对输入图像提取特征,得到特征图;
- RNN(循环层),使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布;
- CTC loss(转录层),使用 CTC 损失,把从循环层获取的一系列标签分布转换成最终的标签序列。
CNN
卷积层的结构图:
这里有一个很精彩的改动,一共有四个最大池化层,但是最后两个池化层的窗口尺寸由 2x2 改为 1x2,也就是图片的高度减半了四次(除以 2^4
),而宽度则只减半了两次(除以2^2),这是因为文本图像多数都是高较小而宽较长,所以其feature
map也是这种高小宽长的矩形形状,如果使用1×2的池化窗口可以尽量保证不丢失在宽度方向的信息,更适合英文字母识别(比如区分i和l)。
CRNN 还引入了BatchNormalization模块,加速模型收敛,缩短训练过程。
输入图像为灰度图像(单通道);高度为32,这是固定的,图片通过 CNN
后,高度就变为1,这点很重要;宽度为160,宽度也可以为其他的值,但需要统一,所以输入CNN的数据尺寸为 (channel, height,
width)=(1, 32, 160)。
CNN的输出尺寸为 (512, 1, 40)。即 CNN 最后得到512个特征图,每个特征图的高度为1,宽度为40。
Map-to-Sequence
我们是不能直接把 CNN 得到的特征图送入 RNN 进行训练的,需要进行一些调整,根据特征图提取 RNN 需要的特征向量序列。
现在需要从 CNN 模型产生的特征图中提取特征向量序列,每一个特征向量(如上图中的一个红色框)在特征图上按列从左到右生成,每一列包含512维特征,这意味着第
i 个特征向量是所有的特征图第 i 列像素的连接,这些特征向量就构成一个序列。
由于卷积层,最大池化层和激活函数在局部区域上执行,因此它们是平移不变的。因此,特征图的每列(即一个特征向量)对应于原始图像的一个矩形区域(称为感受野),并且这些矩形区域与特征图上从左到右的相应列具有相同的顺序。特征序列中的每个向量关联一个感受野。
如下图所示:
这些特征向量序列就作为循环层的输入,每个特征向量作为 RNN 在一个时间步(time step)的输入。
RNN
因为 RNN 有梯度消失的问题,不能获取更多上下文信息,所以 CRNN 中使用的是 LSTM,LSTM
的特殊设计允许它捕获长距离依赖,不了解的话可以看一下这篇文章 对RNN和LSTM的理解。
LSTM
是单向的,它只使用过去的信息。然而,在基于图像的序列中,两个方向的上下文是相互有用且互补的。将两个LSTM,一个向前和一个向后组合到一个双向LSTM中。此外,可以堆叠多层双向LSTM,深层结构允许比浅层抽象更高层次的抽象。
这里采用的是两层各256单元的双向 LSTM 网络:
通过上面一步,我们得到了40个特征向量,每个特征向量长度为512,在 LSTM 中一个时间步就传入一个特征向量进行分
我们知道一个特征向量就相当于原图中的一个小矩形区域,RNN
的目标就是预测这个矩形区域为哪个字符,即根据输入的特征向量,进行预测,得到所有字符的softmax概率分布,这是一个长度为字符类别数的向量,作为CTC层的输入。
因为每个时间步都会有一个输入特征向量 x^T ,输出一个所有字符的概率分布 y^T ,所以输出为 40 个长度为字符类别数的向量构成的后验概率矩阵。
如下图所示:
然后将这个后验概率矩阵传入转录层。
CTC loss
这算是 CRNN 最难的地方,这一层为转录层,转录是将 RNN
对每个特征向量所做的预测转换成标签序列的过程。数学上,转录是根据每帧预测找到具有最高概率组合的标签序列。
端到端OCR识别的难点在于怎么处理不定长序列对齐的问题!OCR可建模为时序依赖的文本图像问题,然后使用CTC(Connectionist Temporal
Classification, CTC)的损失函数来对 CNN 和 RNN 进行端到端的联合训练。
相关代码
def inference(self, inputdata, name, reuse=False):"""Main routine to construct the network:param inputdata::param name::param reuse::return:"""with tf.variable_scope(name_or_scope=name, reuse=reuse):# centerlized datainputdata = tf.divide(inputdata, 255.0)#1.特征提取阶段# first apply the cnn feature extraction stagecnn_out = self._feature_sequence_extraction(inputdata=inputdata, name='feature_extraction_module')#2.第二步, batch*1*25*512 变成 batch * 25 * 512# second apply the map to sequence stagesequence = self._map_to_sequence(inputdata=cnn_out, name='map_to_sequence_module')#第三步,应用序列标签阶段# third apply the sequence label stage# net_out width, batch, n_classes# raw_pred width, batch, 1net_out, raw_pred = self._sequence_label(inputdata=sequence, name='sequence_rnn_module')return net_out
5 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:

竞赛选题 深度学习OCR中文识别 - opencv python
文章目录 0 前言1 课题背景2 实现效果3 文本区域检测网络-CTPN4 文本识别网络-CRNN5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习OCR中文识别系统 ** 该项目较为新颖,适合作为竞赛课题方向,…...

ezEIP信息泄露
漏洞描述 ezEIP存在信息泄露漏洞,通过遍历Cookie中的参数值获取敏感信息 漏洞复现 漏洞Url为 /label/member/getinfo.aspx访问时添加Cookie(通过遍历获取用户的登录名电话邮箱等信息) WHIR_USERINFORwhir_mem_member_pid1;漏洞证明&…...

02.机器学习原理(复习)
目录 机器学习的本质机器学习的类型Regression/回归Classification/分类Structured Learning/结构化学习 ML的三板斧设定范围设定标准监督学习半监督学习其他 达成目标小结达成目标设定标准设定范围 部分截图来自原课程视频《2023李宏毅最新生成式AI教程》,B站自行搜…...

电源集成INN3270C-H215-TL、INN3278C-H114-TL、INN3278C-H215-TL简化了反激式电源转换器的设计和制造。
一、概述 InnoSwitch™3-CP系列IC极大地简化了反激式电源转换器的设计和制造,特别是那些需要高效率和/或紧凑尺寸的产品。InnoSwitch3-CP系列将初级和次级控制器以及安全额定反馈集成到单个IC中。 InnoSwitch3-CP系列器件集成了多种保护功能,包括线路过…...

UE4和C++ 开发--HUD类
HUD 平视显示器(Head Up Display),简称HUD。在蓝图中是指在屏幕上面绘制的二维物体。 1. 创建HUD 打开蓝图编辑器,创建一个蓝图类,搜索HUD,选择并命名BP_HUD。 2. 开始绘制 打开事件列表,右键搜索 EventReceive Draw HUD。有两…...
使用js怎么设置视频背景
要使用JavaScript设置网页的视频背景,你需要将视频元素添加到你的HTML文档中,然后使用JavaScript来控制它 首先,在你的HTML文件中添加一个 <video> 元素 <video id"video-background" autoplay muted loop><sourc…...

Gin,Gorm实现Web计算器
目录 仓库链接0.PSP表格1. 成品展示1.基础运算2. 清零回退3.错误提示4.历史记录拓展功能1.前端可修改的利率计算器2.科学计算器3. 按钮切换不同计算器模式4.用户在一次运算后不清零继续输入操作符,替换表达式为上次答案 2.设计实现过程3.代码说明4.心路历程和收获 仓…...

11-网络篇-DNS步骤
1.URL URL就是我们常说的网址 https://www.baidu.com/?from1086k https是协议 m.baidu.com是服务器域名 ?from1086k是路径 2.域名 比如https://www.baidu.com 顶级域名.com 二级域名baidu 三级域名www 3.域名解析DNS DNS就是将域名转换成IP的过程 根域名服务器:…...

设计师都应该知道的事:极简主义家具该怎么去用
这座房子有黑暗而沉重的特征,包括棕色和白色的马赛克浴室瓷砖,弯曲的锻铁壁灯和土黄色的威尼斯石膏墙。但由于房屋与他们的风格相去甚远,白色,干净和简约,接下来我们就着这个方向去帮助房主进行改造。 她解释说&#x…...

设计模式02———建造者模式 c#
首先我们打开一个项目 在这个初始界面我们需要做一些准备工作 建基础通用包 创建一个Plane 重置后 缩放100倍 加一个颜色 更换天空盒(个人喜好) 任务:使用【UI】点击生成6种车零件组装不同类型车 【建造者模式】 首先资源商店下载车模型 将C…...

2023最新接口自动化测试面试题
1、get和post的区别? l http是上层请求协议,主要定义了服务端和客户端的交互规格,底层都是tcp/ip协议 l Get会把参数附在url之后,用?分割,&连接不同参数,Get获取资源,post会把…...

GaN器件的工作原理
目录 AlGaN/GaNHEMT 器件工作原理(常开-耗尽型器件)常关 AlGaN/GaN 功率晶体管(增强型器件)HD-GIT与SP-HEMT AlGaN/GaNHEMT 器件工作原理(常开-耗尽型器件) 来源:毫米波GaN基功率器件及MMIC电路…...
点云从入门到精通技术详解100篇-海量三维点云的空间索引及可视化应用(续)
目录 3.2.3 方向八叉树与八叉树的比较 3.3 多级索引结构 3.3.1 多级索引结构的构建...

androidx和v4包资源冲突解决方法
一、资源包会报如下错误: 错误类似 (androidx.core:core:1.10.0) 和 (com.android.support:support-compat:24.2.0) 表示资源重复,不知调用androidx包下面的,还是v4包下面的 Duplicate class android.support.v4.app.INotificationSideCha…...

【发烧期间随笔】第一次游戏开发经历的总结与反思
一、前言 这两天三阳了,头疼头晕恶心发烧打喷嚏流鼻涕咳嗽嗓子疼气管疼都找上门来了,这导致一周以来都没学什么东西,无意间又刷到各个游戏厂关于本人目标岗位HC骤减且要求造火箭的能力的消息,这两天一直是在病痛和焦虑中度过的&a…...
CCombBox组合框
1、 MFC_Combo_Box(组合框)的详细用法_mfc combo-CSDN博客 2、 常用属性设置: 属性 含义 data 设置内容,不同内容间用英文的分号“;”分隔 type 显示风格 Sort True 内容自动排序 常用接口: 接口 功能 CComboBox::AddString 组…...

机器学习-有监督学习-神经网络
目录 线性模型分类与回归感知机模型激活函数维度诅咒过拟合和欠拟合正则数据增强数值稳定性神经网络大家族CNNRNNGNN(图神经网络)GAN 线性模型 向量版本 y ⟨ w , x ⟩ b y \langle w, x \rangle b y⟨w,x⟩b 分类与回归 懂得两者区别激活函数&a…...
React之组件通信
#一、是什么 我们将组件间通信可以拆分为两个词: 组件通信 回顾Vue系列 (opens new window)的文章,组件是vue中最强大的功能之一,同样组件化是React的核心思想 相比vue,React的组件更加灵活和多样,按照不同的方式可…...
什么是微服务架构
阅读“微服务架构”一词可能会让您直观地了解该术语的含义:计算架构中的小型服务。这个定义并不完全错误,但也不完全正确。 微服务架构通常被称为“打破整体”的一种方式。遗憾的是,这与《2001:太空漫游》无关,而是将…...
<%=%>模板写法
<%%> 这种写法通常称为 "内嵌式模板" 或 "模板标记",在前端开发中,这种标记语法用于将动态数据嵌入HTML模板中。这种写法通常与模板引擎一起使用,这些模板引擎会根据提供的数据动态生成HTML。 不同的模板引擎可能…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构
React 实战项目:微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇!在前 29 篇文章中,我们从 React 的基础概念逐步深入到高级技巧,涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...

【Qt】控件 QWidget
控件 QWidget 一. 控件概述二. QWidget 的核心属性可用状态:enabled几何:geometrywindows frame 窗口框架的影响 窗口标题:windowTitle窗口图标:windowIconqrc 机制 窗口不透明度:windowOpacity光标:cursor…...

PLC入门【4】基本指令2(SET RST)
04 基本指令2 PLC编程第四课基本指令(2) 1、运用上接课所学的基本指令完成个简单的实例编程。 2、学习SET--置位指令 3、RST--复位指令 打开软件(FX-TRN-BEG-C),从 文件 - 主画面,“B: 让我们学习基本的”- “B-3.控制优先程序”。 点击“梯形图编辑”…...
使用 uv 工具快速部署并管理 vLLM 推理环境
uv:现代 Python 项目管理的高效助手 uv:Rust 驱动的 Python 包管理新时代 在部署大语言模型(LLM)推理服务时,vLLM 是一个备受关注的方案,具备高吞吐、低延迟和对 OpenAI API 的良好兼容性。为了提高部署效…...