当前位置: 首页 > news >正文

竞赛选题 深度学习OCR中文识别 - opencv python

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 文本区域检测网络-CTPN
  • 4 文本识别网络-CRNN
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习OCR中文识别系统 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

在日常生产生活中有大量的文档资料以图片、PDF的方式留存,随着时间推移 往往难以检索和归类 ,文字识别(Optical Character
Recognition,OCR )是将图片、文档影像上的文字内容快速识别成为可编辑的文本的技术。

高性能文档OCR识别系统是基于深度学习技术,综合运用Tensorflow、CNN、Caffe
等多种深度学习训练框架,基于千万级大规模文字样本集训练完成的OCR引擎,与传统的模式识别的技术相比,深度学习技术支持更低质量的分辨率、抗干扰能力更强、适用的场景更复杂,文字的识别率更高。

本项目基于Tensorflow、keras/pytorch实现对自然场景的文字检测及OCR中文文字识别。

2 实现效果

公式检测
在这里插入图片描述
纯文字识别

在这里插入图片描述

3 文本区域检测网络-CTPN

对于复杂场景的文字识别,首先要定位文字的位置,即文字检测。

简介
CTPN是在ECCV
2016提出的一种文字检测算法。CTPN结合CNN与LSTM深度网络,能有效的检测出复杂场景的横向分布的文字,效果如图1,是目前比较好的文字检测算法。由于CTPN是从Faster
RCNN改进而来,本文默认读者熟悉CNN原理和Faster RCNN网络结构。
在这里插入图片描述
相关代码

def main(argv):pycaffe_dir = os.path.dirname(__file__)parser = argparse.ArgumentParser()# Required arguments: input and output.parser.add_argument("input_file",help="Input txt/csv filename. If .txt, must be list of filenames.\If .csv, must be comma-separated file with header\'filename, xmin, ymin, xmax, ymax'")parser.add_argument("output_file",help="Output h5/csv filename. Format depends on extension.")# Optional arguments.parser.add_argument("--model_def",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/deploy.prototxt.prototxt"),help="Model definition file.")parser.add_argument("--pretrained_model",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"),help="Trained model weights file.")parser.add_argument("--crop_mode",default="selective_search",choices=CROP_MODES,help="How to generate windows for detection.")parser.add_argument("--gpu",action='store_true',help="Switch for gpu computation.")parser.add_argument("--mean_file",default=os.path.join(pycaffe_dir,'caffe/imagenet/ilsvrc_2012_mean.npy'),help="Data set image mean of H x W x K dimensions (numpy array). " +"Set to '' for no mean subtraction.")parser.add_argument("--input_scale",type=float,help="Multiply input features by this scale to finish preprocessing.")parser.add_argument("--raw_scale",type=float,default=255.0,help="Multiply raw input by this scale before preprocessing.")parser.add_argument("--channel_swap",default='2,1,0',help="Order to permute input channels. The default converts " +"RGB -> BGR since BGR is the Caffe default by way of OpenCV.")parser.add_argument("--context_pad",type=int,default='16',help="Amount of surrounding context to collect in input window.")args = parser.parse_args()mean, channel_swap = None, Noneif args.mean_file:mean = np.load(args.mean_file)if mean.shape[1:] != (1, 1):mean = mean.mean(1).mean(1)if args.channel_swap:channel_swap = [int(s) for s in args.channel_swap.split(',')]if args.gpu:caffe.set_mode_gpu()print("GPU mode")else:caffe.set_mode_cpu()print("CPU mode")# Make detector.detector = caffe.Detector(args.model_def, args.pretrained_model, mean=mean,input_scale=args.input_scale, raw_scale=args.raw_scale,channel_swap=channel_swap,context_pad=args.context_pad)# Load input.t = time.time()print("Loading input...")if args.input_file.lower().endswith('txt'):with open(args.input_file) as f:inputs = [_.strip() for _ in f.readlines()]elif args.input_file.lower().endswith('csv'):inputs = pd.read_csv(args.input_file, sep=',', dtype={'filename': str})inputs.set_index('filename', inplace=True)else:raise Exception("Unknown input file type: not in txt or csv.")# Detect.if args.crop_mode == 'list':# Unpack sequence of (image filename, windows).images_windows = [(ix, inputs.iloc[np.where(inputs.index == ix)][COORD_COLS].values)for ix in inputs.index.unique()]detections = detector.detect_windows(images_windows)else:detections = detector.detect_selective_search(inputs)print("Processed {} windows in {:.3f} s.".format(len(detections),time.time() - t))# Collect into dataframe with labeled fields.df = pd.DataFrame(detections)df.set_index('filename', inplace=True)df[COORD_COLS] = pd.DataFrame(data=np.vstack(df['window']), index=df.index, columns=COORD_COLS)del(df['window'])# Save results.t = time.time()if args.output_file.lower().endswith('csv'):# csv# Enumerate the class probabilities.class_cols = ['class{}'.format(x) for x in range(NUM_OUTPUT)]df[class_cols] = pd.DataFrame(data=np.vstack(df['feat']), index=df.index, columns=class_cols)df.to_csv(args.output_file, cols=COORD_COLS + class_cols)else:# h5df.to_hdf(args.output_file, 'df', mode='w')print("Saved to {} in {:.3f} s.".format(args.output_file,time.time() - t))

CTPN网络结构
在这里插入图片描述

4 文本识别网络-CRNN

CRNN 介绍
CRNN 全称为 Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用

图来自文章:一文读懂CRNN+CTC文字识别

整个CRNN网络结构包含三部分,从下到上依次为:

  1. CNN(卷积层),使用深度CNN,对输入图像提取特征,得到特征图;
  2. RNN(循环层),使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布;
  3. CTC loss(转录层),使用 CTC 损失,把从循环层获取的一系列标签分布转换成最终的标签序列。

CNN
卷积层的结构图:
在这里插入图片描述

这里有一个很精彩的改动,一共有四个最大池化层,但是最后两个池化层的窗口尺寸由 2x2 改为 1x2,也就是图片的高度减半了四次(除以 2^4
),而宽度则只减半了两次(除以2^2),这是因为文本图像多数都是高较小而宽较长,所以其feature
map也是这种高小宽长的矩形形状,如果使用1×2的池化窗口可以尽量保证不丢失在宽度方向的信息,更适合英文字母识别(比如区分i和l)。

CRNN 还引入了BatchNormalization模块,加速模型收敛,缩短训练过程。

输入图像为灰度图像(单通道);高度为32,这是固定的,图片通过 CNN
后,高度就变为1,这点很重要;宽度为160,宽度也可以为其他的值,但需要统一,所以输入CNN的数据尺寸为 (channel, height,
width)=(1, 32, 160)。

CNN的输出尺寸为 (512, 1, 40)。即 CNN 最后得到512个特征图,每个特征图的高度为1,宽度为40。

Map-to-Sequence
我们是不能直接把 CNN 得到的特征图送入 RNN 进行训练的,需要进行一些调整,根据特征图提取 RNN 需要的特征向量序列。

在这里插入图片描述

现在需要从 CNN 模型产生的特征图中提取特征向量序列,每一个特征向量(如上图中的一个红色框)在特征图上按列从左到右生成,每一列包含512维特征,这意味着第
i 个特征向量是所有的特征图第 i 列像素的连接,这些特征向量就构成一个序列。

由于卷积层,最大池化层和激活函数在局部区域上执行,因此它们是平移不变的。因此,特征图的每列(即一个特征向量)对应于原始图像的一个矩形区域(称为感受野),并且这些矩形区域与特征图上从左到右的相应列具有相同的顺序。特征序列中的每个向量关联一个感受野。

如下图所示:
在这里插入图片描述

这些特征向量序列就作为循环层的输入,每个特征向量作为 RNN 在一个时间步(time step)的输入。

RNN
因为 RNN 有梯度消失的问题,不能获取更多上下文信息,所以 CRNN 中使用的是 LSTM,LSTM
的特殊设计允许它捕获长距离依赖,不了解的话可以看一下这篇文章 对RNN和LSTM的理解。

LSTM
是单向的,它只使用过去的信息。然而,在基于图像的序列中,两个方向的上下文是相互有用且互补的。将两个LSTM,一个向前和一个向后组合到一个双向LSTM中。此外,可以堆叠多层双向LSTM,深层结构允许比浅层抽象更高层次的抽象。

这里采用的是两层各256单元的双向 LSTM 网络:
在这里插入图片描述

通过上面一步,我们得到了40个特征向量,每个特征向量长度为512,在 LSTM 中一个时间步就传入一个特征向量进行分

我们知道一个特征向量就相当于原图中的一个小矩形区域,RNN
的目标就是预测这个矩形区域为哪个字符,即根据输入的特征向量,进行预测,得到所有字符的softmax概率分布,这是一个长度为字符类别数的向量,作为CTC层的输入。

因为每个时间步都会有一个输入特征向量 x^T ,输出一个所有字符的概率分布 y^T ,所以输出为 40 个长度为字符类别数的向量构成的后验概率矩阵。

如下图所示:
在这里插入图片描述

然后将这个后验概率矩阵传入转录层。
CTC loss
这算是 CRNN 最难的地方,这一层为转录层,转录是将 RNN
对每个特征向量所做的预测转换成标签序列的过程。数学上,转录是根据每帧预测找到具有最高概率组合的标签序列。

端到端OCR识别的难点在于怎么处理不定长序列对齐的问题!OCR可建模为时序依赖的文本图像问题,然后使用CTC(Connectionist Temporal
Classification, CTC)的损失函数来对 CNN 和 RNN 进行端到端的联合训练。

相关代码

    def inference(self, inputdata, name, reuse=False):"""Main routine to construct the network:param inputdata::param name::param reuse::return:"""with tf.variable_scope(name_or_scope=name, reuse=reuse):# centerlized datainputdata = tf.divide(inputdata, 255.0)#1.特征提取阶段# first apply the cnn feature extraction stagecnn_out = self._feature_sequence_extraction(inputdata=inputdata, name='feature_extraction_module')#2.第二步,  batch*1*25*512  变成 batch * 25 * 512# second apply the map to sequence stagesequence = self._map_to_sequence(inputdata=cnn_out, name='map_to_sequence_module')#第三步,应用序列标签阶段# third apply the sequence label stage# net_out width, batch, n_classes# raw_pred   width, batch, 1net_out, raw_pred = self._sequence_label(inputdata=sequence, name='sequence_rnn_module')return net_out

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

竞赛选题 深度学习OCR中文识别 - opencv python

文章目录 0 前言1 课题背景2 实现效果3 文本区域检测网络-CTPN4 文本识别网络-CRNN5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习OCR中文识别系统 ** 该项目较为新颖,适合作为竞赛课题方向,…...

ezEIP信息泄露

漏洞描述 ezEIP存在信息泄露漏洞,通过遍历Cookie中的参数值获取敏感信息 漏洞复现 漏洞Url为 /label/member/getinfo.aspx访问时添加Cookie(通过遍历获取用户的登录名电话邮箱等信息) WHIR_USERINFORwhir_mem_member_pid1;漏洞证明&…...

02.机器学习原理(复习)

目录 机器学习的本质机器学习的类型Regression/回归Classification/分类Structured Learning/结构化学习 ML的三板斧设定范围设定标准监督学习半监督学习其他 达成目标小结达成目标设定标准设定范围 部分截图来自原课程视频《2023李宏毅最新生成式AI教程》,B站自行搜…...

电源集成INN3270C-H215-TL、INN3278C-H114-TL、INN3278C-H215-TL简化了反激式电源转换器的设计和制造。

一、概述 InnoSwitch™3-CP系列IC极大地简化了反激式电源转换器的设计和制造,特别是那些需要高效率和/或紧凑尺寸的产品。InnoSwitch3-CP系列将初级和次级控制器以及安全额定反馈集成到单个IC中。 InnoSwitch3-CP系列器件集成了多种保护功能,包括线路过…...

UE4和C++ 开发--HUD类

HUD 平视显示器(Head Up Display),简称HUD。在蓝图中是指在屏幕上面绘制的二维物体。 1. 创建HUD 打开蓝图编辑器,创建一个蓝图类,搜索HUD,选择并命名BP_HUD。 2. 开始绘制 打开事件列表,右键搜索 EventReceive Draw HUD。有两…...

使用js怎么设置视频背景

要使用JavaScript设置网页的视频背景&#xff0c;你需要将视频元素添加到你的HTML文档中&#xff0c;然后使用JavaScript来控制它 首先&#xff0c;在你的HTML文件中添加一个 <video> 元素 <video id"video-background" autoplay muted loop><sourc…...

Gin,Gorm实现Web计算器

目录 仓库链接0.PSP表格1. 成品展示1.基础运算2. 清零回退3.错误提示4.历史记录拓展功能1.前端可修改的利率计算器2.科学计算器3. 按钮切换不同计算器模式4.用户在一次运算后不清零继续输入操作符&#xff0c;替换表达式为上次答案 2.设计实现过程3.代码说明4.心路历程和收获 仓…...

11-网络篇-DNS步骤

1.URL URL就是我们常说的网址 https://www.baidu.com/?from1086k https是协议 m.baidu.com是服务器域名 ?from1086k是路径 2.域名 比如https://www.baidu.com 顶级域名.com 二级域名baidu 三级域名www 3.域名解析DNS DNS就是将域名转换成IP的过程 根域名服务器&#xff1a…...

设计师都应该知道的事:极简主义家具该怎么去用

这座房子有黑暗而沉重的特征&#xff0c;包括棕色和白色的马赛克浴室瓷砖&#xff0c;弯曲的锻铁壁灯和土黄色的威尼斯石膏墙。但由于房屋与他们的风格相去甚远&#xff0c;白色&#xff0c;干净和简约&#xff0c;接下来我们就着这个方向去帮助房主进行改造。 她解释说&#x…...

设计模式02———建造者模式 c#

首先我们打开一个项目 在这个初始界面我们需要做一些准备工作 建基础通用包 创建一个Plane 重置后 缩放100倍 加一个颜色 更换天空盒&#xff08;个人喜好&#xff09; 任务&#xff1a;使用【UI】点击生成6种车零件组装不同类型车 【建造者模式】 首先资源商店下载车模型 将C…...

2023最新接口自动化测试面试题

1、get和post的区别&#xff1f; l http是上层请求协议&#xff0c;主要定义了服务端和客户端的交互规格&#xff0c;底层都是tcp/ip协议 l Get会把参数附在url之后&#xff0c;用&#xff1f;分割&#xff0c;&连接不同参数&#xff0c;Get获取资源&#xff0c;post会把…...

GaN器件的工作原理

目录 AlGaN/GaNHEMT 器件工作原理&#xff08;常开-耗尽型器件&#xff09;常关 AlGaN/GaN 功率晶体管&#xff08;增强型器件&#xff09;HD-GIT与SP-HEMT AlGaN/GaNHEMT 器件工作原理&#xff08;常开-耗尽型器件&#xff09; 来源&#xff1a;毫米波GaN基功率器件及MMIC电路…...

点云从入门到精通技术详解100篇-海量三维点云的空间索引及可视化应用(续)

目录 3.2.3 方向八叉树与八叉树的比较 3.3 多级索引结构 3.3.1 多级索引结构的构建...

androidx和v4包资源冲突解决方法

一、资源包会报如下错误&#xff1a; 错误类似 (androidx.core:core:1.10.0) 和 (com.android.support:support-compat:24.2.0) 表示资源重复&#xff0c;不知调用androidx包下面的&#xff0c;还是v4包下面的 Duplicate class android.support.v4.app.INotificationSideCha…...

【发烧期间随笔】第一次游戏开发经历的总结与反思

一、前言 这两天三阳了&#xff0c;头疼头晕恶心发烧打喷嚏流鼻涕咳嗽嗓子疼气管疼都找上门来了&#xff0c;这导致一周以来都没学什么东西&#xff0c;无意间又刷到各个游戏厂关于本人目标岗位HC骤减且要求造火箭的能力的消息&#xff0c;这两天一直是在病痛和焦虑中度过的&a…...

CCombBox组合框

1、 MFC_Combo_Box(组合框)的详细用法_mfc combo-CSDN博客 2、 常用属性设置&#xff1a; 属性 含义 data 设置内容&#xff0c;不同内容间用英文的分号“;”分隔 type 显示风格 Sort True 内容自动排序 常用接口&#xff1a; 接口 功能 CComboBox::AddString 组…...

机器学习-有监督学习-神经网络

目录 线性模型分类与回归感知机模型激活函数维度诅咒过拟合和欠拟合正则数据增强数值稳定性神经网络大家族CNNRNNGNN&#xff08;图神经网络&#xff09;GAN 线性模型 向量版本 y ⟨ w , x ⟩ b y \langle w, x \rangle b y⟨w,x⟩b 分类与回归 懂得两者区别激活函数&a…...

React之组件通信

#一、是什么 我们将组件间通信可以拆分为两个词&#xff1a; 组件通信 回顾Vue系列 (opens new window)的文章&#xff0c;组件是vue中最强大的功能之一&#xff0c;同样组件化是React的核心思想 相比vue&#xff0c;React的组件更加灵活和多样&#xff0c;按照不同的方式可…...

什么是微服务架构

阅读“微服务架构”一词可能会让您直观地了解该术语的含义&#xff1a;计算架构中的小型服务。这个定义并不完全错误&#xff0c;但也不完全正确。 微服务架构通常被称为“打破整体”的一种方式。遗憾的是&#xff0c;这与《2001&#xff1a;太空漫游》无关&#xff0c;而是将…...

<%=%>模板写法

<%%> 这种写法通常称为 "内嵌式模板" 或 "模板标记"&#xff0c;在前端开发中&#xff0c;这种标记语法用于将动态数据嵌入HTML模板中。这种写法通常与模板引擎一起使用&#xff0c;这些模板引擎会根据提供的数据动态生成HTML。 不同的模板引擎可能…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

Vue3中的computer和watch

computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...