C# CodeFormer 图像修复
效果




项目
代码
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Windows.Forms;namespace 图像修复
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;int modelSize = 512;string model_path;Mat image;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}textBox1.Text = "";pictureBox2.Image = null;result_image = OnnxHelper.Run(image, modelSize, input_tensor, input_container, onnx_session, ref dt1, ref dt2);if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}else{textBox1.Text = "无信息";}}private void Form1_Load(object sender, EventArgs e){startupPath = Application.StartupPath;model_path = startupPath + "\\model\\codeformer.onnx";modelSize = 512;// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;//设置为CPU上运行options.AppendExecutionProvider_CPU(0);// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, modelSize, modelSize });// 创建输入容器input_container = new List<NamedOnnxValue>();}private void button3_Click(object sender, EventArgs e){if (pictureBox2.Image == null){return;}Bitmap output = new Bitmap(pictureBox2.Image);var sdf = new SaveFileDialog();sdf.Title = "保存";sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";if (sdf.ShowDialog() == DialogResult.OK){switch (sdf.FilterIndex){case 1:{output.Save(sdf.FileName, ImageFormat.Jpeg);break;}case 2:{output.Save(sdf.FileName, ImageFormat.Png);break;}case 3:{output.Save(sdf.FileName, ImageFormat.Bmp);break;}case 4:{output.Save(sdf.FileName, ImageFormat.Emf);break;}case 5:{output.Save(sdf.FileName, ImageFormat.Exif);break;}case 6:{output.Save(sdf.FileName, ImageFormat.Gif);break;}case 7:{output.Save(sdf.FileName, ImageFormat.Icon);break;}case 8:{output.Save(sdf.FileName, ImageFormat.Tiff);break;}case 9:{output.Save(sdf.FileName, ImageFormat.Wmf);break;}}MessageBox.Show("保存成功,位置:" + sdf.FileName);}}}
}
下载
可执行程序exe下载
源码下载
其他
C# GFPGAN 图像修复-CSDN博客
C# RestoreFormer 图像修复-CSDN博客
C# GPEN-BFR 图像修复-CSDN博客
相关文章:
C# CodeFormer 图像修复
效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Imaging; using System.Windows.Forms;namespace 图像修复 {p…...
Android Studio的笔记--HttpURLConnection使用GET下载zip文件
HttpURLConnection使用GET下载zip文件 http get下载zip文件MainActivity.javaAndroidMainfest.xmlactivity_main.xmllog http get下载zip文件 MainActivity.java 用HttpURLConnection GET方法进行需注意: 1、Android 9及以上版本需要设置这个,否则会有…...
phantom3D模体
phantom是人头模型,分为2D和3D两种,matlab中可直接调用phantom(size)生成2D数据,如图1,而三维需要对应函数文件,下载:3D 图1 2D phantom 3D模体为一个椭球体,只能生成xyz三个方向相同维度的模…...
贪心算法解决批量开票限额的问题
具体问题:批量订单开票 限制:1.开最少的张数 2.每张限额10w # 贪心算法 def split_invoice_by_item(items):items_sorted sorted(items, keylambda x: x.price, reverseTrue)invoices []for item in items_sorted:# 尝试将商品加入已有的发票中added …...
Unity后台登录/获取数据——BestHTTP的使用Get/Post
一、使用BestHTTP实现登录功能(Post) 登录具体的步骤如下: 1:传入你的用户名和密码,这是一条包括链接和用户名密码的链接 2:使用BestHTTP的Post功能将链接传到服务器后台 3:后台拿到了你传送…...
【Windows日志】记录系统事件的日志
文章目录 一、概要二、Windows日志介绍 2.1 应用程序日志2.2 系统日志2.3 安全日志 三、查看与分析日志四、常见事件ID 4.1 登录事件 4.1.1 4624登陆成功4.1.2 4625登陆失败 4.2 特权使用4.3 账户管理事件4.4 账户登录事件5.2 事件ID汇总 一、概要 Windows主要有以下三类日…...
物联网开发学习笔记——目录索引
什么是物联网? 物联网的英文名称是Internet of Things。IoT则是Internet of Things的缩写。 通俗地说,就是把设备与互联网连接起来,进行信息交互。 目录 一、开发环境配置 工欲善其事必先利其器,首先是开发环境配置。 开发环…...
Prometheus:优秀和强大的监控报警工具
文章目录 概述Prometheus的底层技术和原理数据模型数据采集数据存储查询语言数据可视化 Prometheus的部署Prometheus的使用配置数据采集目标查询监控数据设置警报规则 查看数据可视化总结 概述 Prometheus是一款开源的监控和警报工具,用于收集和存储系统和应用程序…...
Appium
# 获取元素和屏幕截图 echo on adb shell uiautomator dump /sdcard/app.uix adb pull /sdcard/app.uix F:\APP\app.uixadb shell screencap -p /sdcard/app.png adb pull /sdcard/app.png F:\APP\app.png卸载appium npm uninstall appium -g 重新安装appium npm install -g a…...
自动驾驶学习笔记(五)——绕行距离调试
#Apollo开发者# 学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往: 《自动驾驶新人之旅》免费课程—> 传送门 《2023星火培训【感知专项营】》免费课程—>传送门 文章目录 前言 调试内容 打开在线编辑器 打开pl…...
【Android】VirtualDisplay创建流程及原理
Android VirtualDisplay创建流程及原理 Android DisplayManager提供了createVirtualDisplay接口,用于创建虚拟屏。虚拟屏可用于录屏(网上很多资料说这个功能),分屏幕(比如一块很长的屏幕,通过虚拟屏分出不…...
Linux服务器快速搭建pytorch
Linux服务器搭建pytorch 文章目录 Linux服务器搭建pytorch一、使用FileZilla传输Anaconda二、激活Anaconda环境1.创建一个虚拟环境2.使用已有项目生成requirements.txt3.在虚拟环境中使用requirements.txt安装其他项目相关库 总结 一、使用FileZilla传输Anaconda 提示…...
声音克隆,定制自己的声音,使用最新版Bert-VITS2的云端训练+推理记录
说明 本次训练服务器使用Google Colab T4 GPUBert-VITS2库为:https://github.com/fishaudio/Bert-VITS2,其更新较为频繁,使用其2023.10.12的commit版本:主要参考:B站诸多大佬视频,CSDN:https://blog.csdn.…...
LeetCode讲解篇之198. 打家劫舍
LeetCode讲解篇之198. 打家劫舍 文章目录 LeetCode讲解篇之198. 打家劫舍题目描述题解思路题解代码 题目描述 题解思路 该问题可以通过递推来完成 递推公式: 前n间房的最大金额 max(前n-1间房的最大金额, 前n-2间房的最大金额第n-1间房的最…...
【下载共享文件】Java基于SMB协议 + JCIFS依赖下载Windows共享文件(亲测可用)
这篇文章,主要介绍如何使用JCIFS依赖库,基于SMB协议下载Windows共享文件。 目录 一、搭建Windows共享文件服务 1.1、创建共享文件目录 1.2、添加文件...
【评分卡实现】应用Python中的toad.ScoreCard函数实现评分卡
逻辑回归已经在各大银行和公司都实际运用于业务。之前的文章已经阐述了逻辑回归三部曲——逻辑回归和sigmod函数的由来、...
【数据结构】双链表的相关操作(声明结构体成员、初始化、判空、增、删、查)
双链表 双链表的特点声明双链表的结构体成员双链表的初始化带头结点的双链表初始化不带头结点的双链表初始化调用双链表的初始化 双链表的判空带头结点的双链表判空不带头结点的双链表判空 双链表的插入(按值插入)头插法建立双链表带头结点的头插法每次调…...
解析找不到msvcp140.dll的5个解决方法,快速修复dll丢失问题
在使用计算机过程中,我们也会遇到各种各样的问题。其中,找不到msvcp140.dll修复方法是一个非常普遍的问题。msvcp140.dll是一个动态链接库文件,它是Microsoft Visual C 2015 Redistributable的一部分。这个文件包含了许多用于运行C程序的函…...
代码管理工具 gitlab实战应用
系列文章目录 第一章 Java线程池技术应用 第二章 CountDownLatch和Semaphone的应用 第三章 Spring Cloud 简介 第四章 Spring Cloud Netflix 之 Eureka 第五章 Spring Cloud Netflix 之 Ribbon 第六章 Spring Cloud 之 OpenFeign 第七章 Spring Cloud 之 GateWay 第八章 Sprin…...
小谈设计模式(27)—享元模式
小谈设计模式(27)—享元模式 专栏介绍专栏地址专栏介绍 享元模式模式结构分析享元工厂(FlyweightFactory)享元接口(Flyweight)具体享元(ConcreteFlyweight)非共享具体享元࿰…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
