学习pytorch13 神经网络-搭建小实战Sequential的使用
神经网络-搭建小实战&Sequential的使用
- 官网
- 模型结构
- 根据模型结构和数据的输入shape,计算用在模型中的超参数
- code
- running log
- 网络结构可视化
B站小土堆pytorch视频学习
官网
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
sequential 将模型结构组合起来 以逗号分割,按顺序执行,和compose使用方式类似。
模型结构
根据模型结构和数据的输入shape,计算用在模型中的超参数
箭头指向部分还需要一层flatten层,展开输入shape为一维
code
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriterclass MySeq(nn.Module):def __init__(self):super(MySeq, self).__init__()self.conv1 = Conv2d(3, 32, kernel_size=5, stride=1, padding=2)self.maxp1 = MaxPool2d(2)self.conv2 = Conv2d(32, 32, kernel_size=5, stride=1, padding=2)self.maxp2 = MaxPool2d(2)self.conv3 = Conv2d(32, 64, kernel_size=5, stride=1, padding=2)self.maxp3 = MaxPool2d(2)self.flatten1 = Flatten()self.linear1 = Linear(1024, 64)self.linear2 = Linear(64, 10)def forward(self, x):x = self.conv1(x)x = self.maxp1(x)x = self.conv2(x)x = self.maxp2(x)x = self.conv3(x)x = self.maxp3(x)x = self.flatten1(x)x = self.linear1(x)x = self.linear2(x)return xclass MySeq2(nn.Module):def __init__(self):super(MySeq2, self).__init__()self.model1 = Sequential(Conv2d(3, 32, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Conv2d(32, 32, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Conv2d(32, 64, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x):x = self.model1(x)return xmyseq = MySeq()
input = torch.ones(64, 3, 32, 32)
print(myseq)
print(input.shape)
output = myseq(input)
print(output.shape)myseq2 = MySeq2()
print(myseq2)
output2 = myseq2(input)
print(output2.shape)wirter = SummaryWriter('logs')
wirter.add_graph(myseq, input)
wirter.add_graph(myseq2, input)
running log
MySeq((conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxp1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxp2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxp3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(flatten1): Flatten(start_dim=1, end_dim=-1)(linear1): Linear(in_features=1024, out_features=64, bias=True)(linear2): Linear(in_features=64, out_features=10, bias=True)
)
torch.Size([64, 3, 32, 32])
torch.Size([64, 10])
MySeq2((model1): Sequential((0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(6): Flatten(start_dim=1, end_dim=-1)(7): Linear(in_features=1024, out_features=64, bias=True)(8): Linear(in_features=64, out_features=10, bias=True))
)
torch.Size([64, 10])
网络结构可视化
from torch.utils.tensorboard import SummaryWriter
wirter = SummaryWriter('logs')
wirter.add_graph(myseq, input)
tensorboard --logdir=logs
tensorboard 展示图文件, 双击每层网络,可查看层定义细节
相关文章:

学习pytorch13 神经网络-搭建小实战Sequential的使用
神经网络-搭建小实战&Sequential的使用 官网模型结构根据模型结构和数据的输入shape,计算用在模型中的超参数coderunning log网络结构可视化 B站小土堆pytorch视频学习 官网 https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Se…...

TCP发送接口(如send(),write()等)的返回值与成功发送到接收端的数据量无直接关系
1. TCP发送接口:send() TCP发送数据的接口有send,write,sendmsg。在系统内核中这些函数有一个统一的入口,即sock_sendmsg()。由于TCP是可靠传输,所以对TCP的发送接口很容易产生误解,比如sn send(...); 错误…...

【Python、Qt】使用QItemDelegate实现单元格的富文本显示+复选框功能
主打一个 折磨 坑多 陪伴。代码为Python,C的就自己逐条语句慢慢改吧。 Python代码: import sys from types import MethodType from PyQt5.QtCore import Qt,QPoint,QSize,QRect,QEvent from PyQt5.QtGui import QStandardItemModel, QStandardItem,QTe…...

【JVM】JVM类加载机制
JVM类加载机制 加载双亲委派模型 验证准备解析初始化 JVM的类加载机制,就是把类,从硬盘加载到内存中 Java程序,最开始是一个Java文件,编译成.class文件,运行Java程序,JVM就会读取.class文件,把文件的内容,放到内存中,并且构造成.class类对象 加载 这里的加载是整个类加载的一…...

【面试经典150 | 区间】汇总区间
文章目录 Tag题目来源题目解读解题思路方法一:一次遍历复杂度分析 其他语言python3C 写在最后 Tag 【一次遍历】【数组】【字符串】 题目来源 228. 汇总区间 题目解读 给定一个无重复的升序数组 nums,需要将这个数组按照以下规则进行汇总࿱…...

主流接口测试框架对比
公司计划系统的开展接口自动化测试,需要我这边调研一下主流的接口测试框架给后端测试(主要测试接口)的同事介绍一下每个框架的特定和使用方式。后端同事根据他们接口的特点提出一下需求,看哪个框架更适合我们。 需求 1、接口编写…...

LeetCode 150.逆波兰表达式求值
题目链接 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 题目解析 首先我们需要知道什么是逆波兰表达式,像我们平常遇到的都是中缀表达式,然而逆波兰确实后缀表达式,因此这个题目隐含的意思就是将一个后缀表达式转…...

华为---企业WLAN组网基本配置示例---AC+AP组网
ACAP组网所需的物理条件 1、无线AP---收发无线信号; 2、无线控制器(AC)---用来控制管理多个AP; 3、PoE交换机---能给AP实现网络连接和供电的交换机; 4、授权:默认AC管理的AP数量有限,买授权才能管控更多AP。 WLAN创建…...

循环结构的运用
乘法口诀起源于中国,是古代人进行乘法、除法、开方等运算的基本法则,距今已经有两千多年的历史了,如何运用现代计算机技术快速写出九九乘法表呢? 循环结构可以用来重复执行一条或者多条语句,利用循环结构可以减少源程序…...

深度强化学习第 1 章 机器学习基础
1.1线性模型 线性模型(linear models)是一类最简单的有监督机器学习模型,常被用于简单的机 器学习任务。可以将线性模型视为单层的神经网络。本节讨论线性回归、逻辑斯蒂回归(logistic regression)、 softmax 分类器等…...

第一章 STM32 CubeMX (CAN通信发送)基础篇
第一章 STM32 CubeMX (CAN通信)基础篇 文章目录 第一章 STM32 CubeMX (CAN通信)基础篇STM32中文手册简介简介stm32f1系列CAN的特点CAN连接网络示意图硬件电路CAN波特率计数 一、 STM32 CubeMX设置设置波特率工程目录结构添加CAN驱…...
原子性操作
原子性操作是指一个操作在执行过程中不会被中断,要么全部执行成功,要么全部不执行,不会出现部分执行的情况。原子性操作对于多线程并发编程至关重要,因为它可以确保多个线程之间不会出现竞态条件或数据不一致性。 在计算机科学中…...

论文阅读:Segment Any Point Cloud Sequences by Distilling Vision Foundation Models
目录 概要 Motivation 整体架构流程 技术细节 小结 论文地址:[2306.09347] Segment Any Point Cloud Sequences by Distilling Vision Foundation Models (arxiv.org) 代码地址:GitHub - youquanl/Segment-Any-Point-Cloud: [NeurIPS23 Spotlight]…...

Netty 入门 — 亘古不变的Hello World
这篇文章我们正式开始学习 Netty,在入门之前我们还是需要了解什么是 Netty。 什么是 Netty 为什么很多人都推崇 Java boy 去研究 Netty?Netty 这么高大上,它到底是何方神圣? 用官方的话说:Netty 是一款异步的、基于事…...

idea插件开发javax.net.ssl.SSLException: No PSK available. Unable to resume.
idea插件开发,编译出错 javax.net.ssl.SSLException: No PSK available. Unable to resume.at java.base/sun.security.ssl.Alert.createSSLException(Alert.java:129)at java.base/sun.security.ssl.Alert.createSSLException(Alert.java:117)at java.base/sun.security.ssl.…...
Selenium的WebDriver操作页面的超时或者元素重叠引起的ElementClickInterceptedException
超时 处理由页面加载引起的超时是在使用 Selenium 进行自动化测试中常见的任务。页面加载可能因网络速度慢、页面复杂性或异步操作而导致超时。以下是一些处理页面加载超时的方法: 1.设置隐式等待时间: 使用 implicitly_wait 方法可以设置隐式等待时间…...
oracle数据库的缓存设置
Oracle缓存由两个参数控制SGA_TARGET和PGA_AGGREGATE_TARGET,设置了这两个参数,其他的基本内存部分都由Oracle自动配置为最优值,这也是Oracle推荐的方式。 SGA_TARGET 和PGA_AGGREGATE_TARGET是动态参数,可以在不重启数据库的情况…...

算法通关村第一关-链表青铜挑战笔记
欢迎来到 : 第一关青铜关 java如何创建链表链表怎么增删改查 我们先了解链表 单链表的概念 我们从简单的创建和增删改查开始. 链表的概念 线性表分为顺序表(数组组成)和链表(节点组成) . 链表又分: 单向 双向有哨兵节点 无哨兵节点循环 不循环 链表是一种物理存储单…...

✔ ★【备战实习(面经+项目+算法)】 10.15学习时间表
✔ ★【备战实习(面经项目算法)】 坚持完成每天必做如何找到好工作1. 科学的学习方法(专注!效率!记忆!心流!)2. 每天认真完成必做项,踏实学习技术 认真完成每天必做&…...
pytorch 训练时raise EOFError EOFError
训练到一半时获取验证数据报错 报错代码 imgs next(iter(val_dataloader)) val_dataloader DataLoader(ImageDataset("data/%s" % opt.dataset_name, transforms_transforms_, unalignedTrue, mode"test"),batch_size5,shuffleTrue,num_workers2,)def …...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...