学习pytorch13 神经网络-搭建小实战Sequential的使用
神经网络-搭建小实战&Sequential的使用
- 官网
- 模型结构
- 根据模型结构和数据的输入shape,计算用在模型中的超参数
- code
- running log
- 网络结构可视化
 
B站小土堆pytorch视频学习
官网
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
sequential 将模型结构组合起来 以逗号分割,按顺序执行,和compose使用方式类似。
 
模型结构

根据模型结构和数据的输入shape,计算用在模型中的超参数

箭头指向部分还需要一层flatten层,展开输入shape为一维
 
code
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriterclass MySeq(nn.Module):def __init__(self):super(MySeq, self).__init__()self.conv1 = Conv2d(3, 32, kernel_size=5, stride=1, padding=2)self.maxp1 = MaxPool2d(2)self.conv2 = Conv2d(32, 32, kernel_size=5, stride=1, padding=2)self.maxp2 = MaxPool2d(2)self.conv3 = Conv2d(32, 64, kernel_size=5, stride=1, padding=2)self.maxp3 = MaxPool2d(2)self.flatten1 = Flatten()self.linear1 = Linear(1024, 64)self.linear2 = Linear(64, 10)def forward(self, x):x = self.conv1(x)x = self.maxp1(x)x = self.conv2(x)x = self.maxp2(x)x = self.conv3(x)x = self.maxp3(x)x = self.flatten1(x)x = self.linear1(x)x = self.linear2(x)return xclass MySeq2(nn.Module):def __init__(self):super(MySeq2, self).__init__()self.model1 = Sequential(Conv2d(3, 32, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Conv2d(32, 32, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Conv2d(32, 64, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x):x = self.model1(x)return xmyseq = MySeq()
input = torch.ones(64, 3, 32, 32)
print(myseq)
print(input.shape)
output = myseq(input)
print(output.shape)myseq2 = MySeq2()
print(myseq2)
output2 = myseq2(input)
print(output2.shape)wirter = SummaryWriter('logs')
wirter.add_graph(myseq, input)
wirter.add_graph(myseq2, input)running log
MySeq((conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxp1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxp2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxp3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(flatten1): Flatten(start_dim=1, end_dim=-1)(linear1): Linear(in_features=1024, out_features=64, bias=True)(linear2): Linear(in_features=64, out_features=10, bias=True)
)
torch.Size([64, 3, 32, 32])
torch.Size([64, 10])
MySeq2((model1): Sequential((0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(6): Flatten(start_dim=1, end_dim=-1)(7): Linear(in_features=1024, out_features=64, bias=True)(8): Linear(in_features=64, out_features=10, bias=True))
)
torch.Size([64, 10])
网络结构可视化
from torch.utils.tensorboard import SummaryWriter
wirter = SummaryWriter('logs')
wirter.add_graph(myseq, input)
tensorboard --logdir=logs
tensorboard 展示图文件, 双击每层网络,可查看层定义细节
 
相关文章:
 
学习pytorch13 神经网络-搭建小实战Sequential的使用
神经网络-搭建小实战&Sequential的使用 官网模型结构根据模型结构和数据的输入shape,计算用在模型中的超参数coderunning log网络结构可视化 B站小土堆pytorch视频学习 官网 https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Se…...
 
TCP发送接口(如send(),write()等)的返回值与成功发送到接收端的数据量无直接关系
1. TCP发送接口:send() TCP发送数据的接口有send,write,sendmsg。在系统内核中这些函数有一个统一的入口,即sock_sendmsg()。由于TCP是可靠传输,所以对TCP的发送接口很容易产生误解,比如sn send(...); 错误…...
 
【Python、Qt】使用QItemDelegate实现单元格的富文本显示+复选框功能
主打一个 折磨 坑多 陪伴。代码为Python,C的就自己逐条语句慢慢改吧。 Python代码: import sys from types import MethodType from PyQt5.QtCore import Qt,QPoint,QSize,QRect,QEvent from PyQt5.QtGui import QStandardItemModel, QStandardItem,QTe…...
 
【JVM】JVM类加载机制
JVM类加载机制 加载双亲委派模型 验证准备解析初始化 JVM的类加载机制,就是把类,从硬盘加载到内存中 Java程序,最开始是一个Java文件,编译成.class文件,运行Java程序,JVM就会读取.class文件,把文件的内容,放到内存中,并且构造成.class类对象 加载 这里的加载是整个类加载的一…...
 
【面试经典150 | 区间】汇总区间
文章目录 Tag题目来源题目解读解题思路方法一:一次遍历复杂度分析 其他语言python3C 写在最后 Tag 【一次遍历】【数组】【字符串】 题目来源 228. 汇总区间 题目解读 给定一个无重复的升序数组 nums,需要将这个数组按照以下规则进行汇总࿱…...
 
主流接口测试框架对比
公司计划系统的开展接口自动化测试,需要我这边调研一下主流的接口测试框架给后端测试(主要测试接口)的同事介绍一下每个框架的特定和使用方式。后端同事根据他们接口的特点提出一下需求,看哪个框架更适合我们。 需求 1、接口编写…...
 
LeetCode 150.逆波兰表达式求值
题目链接 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 题目解析 首先我们需要知道什么是逆波兰表达式,像我们平常遇到的都是中缀表达式,然而逆波兰确实后缀表达式,因此这个题目隐含的意思就是将一个后缀表达式转…...
 
华为---企业WLAN组网基本配置示例---AC+AP组网
ACAP组网所需的物理条件 1、无线AP---收发无线信号; 2、无线控制器(AC)---用来控制管理多个AP; 3、PoE交换机---能给AP实现网络连接和供电的交换机; 4、授权:默认AC管理的AP数量有限,买授权才能管控更多AP。 WLAN创建…...
 
循环结构的运用
乘法口诀起源于中国,是古代人进行乘法、除法、开方等运算的基本法则,距今已经有两千多年的历史了,如何运用现代计算机技术快速写出九九乘法表呢? 循环结构可以用来重复执行一条或者多条语句,利用循环结构可以减少源程序…...
 
深度强化学习第 1 章 机器学习基础
1.1线性模型 线性模型(linear models)是一类最简单的有监督机器学习模型,常被用于简单的机 器学习任务。可以将线性模型视为单层的神经网络。本节讨论线性回归、逻辑斯蒂回归(logistic regression)、 softmax 分类器等…...
 
第一章 STM32 CubeMX (CAN通信发送)基础篇
第一章 STM32 CubeMX (CAN通信)基础篇 文章目录 第一章 STM32 CubeMX (CAN通信)基础篇STM32中文手册简介简介stm32f1系列CAN的特点CAN连接网络示意图硬件电路CAN波特率计数 一、 STM32 CubeMX设置设置波特率工程目录结构添加CAN驱…...
原子性操作
原子性操作是指一个操作在执行过程中不会被中断,要么全部执行成功,要么全部不执行,不会出现部分执行的情况。原子性操作对于多线程并发编程至关重要,因为它可以确保多个线程之间不会出现竞态条件或数据不一致性。 在计算机科学中…...
 
论文阅读:Segment Any Point Cloud Sequences by Distilling Vision Foundation Models
目录 概要 Motivation 整体架构流程 技术细节 小结 论文地址:[2306.09347] Segment Any Point Cloud Sequences by Distilling Vision Foundation Models (arxiv.org) 代码地址:GitHub - youquanl/Segment-Any-Point-Cloud: [NeurIPS23 Spotlight]…...
 
Netty 入门 — 亘古不变的Hello World
这篇文章我们正式开始学习 Netty,在入门之前我们还是需要了解什么是 Netty。 什么是 Netty 为什么很多人都推崇 Java boy 去研究 Netty?Netty 这么高大上,它到底是何方神圣? 用官方的话说:Netty 是一款异步的、基于事…...
 
idea插件开发javax.net.ssl.SSLException: No PSK available. Unable to resume.
idea插件开发,编译出错 javax.net.ssl.SSLException: No PSK available. Unable to resume.at java.base/sun.security.ssl.Alert.createSSLException(Alert.java:129)at java.base/sun.security.ssl.Alert.createSSLException(Alert.java:117)at java.base/sun.security.ssl.…...
Selenium的WebDriver操作页面的超时或者元素重叠引起的ElementClickInterceptedException
超时 处理由页面加载引起的超时是在使用 Selenium 进行自动化测试中常见的任务。页面加载可能因网络速度慢、页面复杂性或异步操作而导致超时。以下是一些处理页面加载超时的方法: 1.设置隐式等待时间: 使用 implicitly_wait 方法可以设置隐式等待时间…...
oracle数据库的缓存设置
Oracle缓存由两个参数控制SGA_TARGET和PGA_AGGREGATE_TARGET,设置了这两个参数,其他的基本内存部分都由Oracle自动配置为最优值,这也是Oracle推荐的方式。 SGA_TARGET 和PGA_AGGREGATE_TARGET是动态参数,可以在不重启数据库的情况…...
 
算法通关村第一关-链表青铜挑战笔记
欢迎来到 : 第一关青铜关 java如何创建链表链表怎么增删改查 我们先了解链表 单链表的概念 我们从简单的创建和增删改查开始. 链表的概念 线性表分为顺序表(数组组成)和链表(节点组成) . 链表又分: 单向 双向有哨兵节点 无哨兵节点循环 不循环 链表是一种物理存储单…...
 
✔ ★【备战实习(面经+项目+算法)】 10.15学习时间表
✔ ★【备战实习(面经项目算法)】 坚持完成每天必做如何找到好工作1. 科学的学习方法(专注!效率!记忆!心流!)2. 每天认真完成必做项,踏实学习技术 认真完成每天必做&…...
pytorch 训练时raise EOFError EOFError
训练到一半时获取验证数据报错 报错代码 imgs next(iter(val_dataloader)) val_dataloader DataLoader(ImageDataset("data/%s" % opt.dataset_name, transforms_transforms_, unalignedTrue, mode"test"),batch_size5,shuffleTrue,num_workers2,)def …...
 
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
 
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
 
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
 
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
 
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
 
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
