交通物流模型 | 基于自监督学习的交通流预测模型
交通物流模型 | 基于自监督学习的交通流预测模型
在智能交通系统中,准确预测不同时间段的城市交通流量是至关重要的。现有的方法存在两个关键的局限性:1、大多数模型集中预测所有区域的交通流量,而没有考虑空间异质性,即不同区域的交通流量分布可能存在偏差;2、现有模型无法捕捉时变交通模式引起的时间异质性,大多数现有模型通常是在所有时间段内与共享参数化空间进行时间相关性建模。为解决上述问题,文章提出了一种新的时空自监督学习(ST-SSL)的预测框架,该框架通过辅助的自监督学习范式,增强了交通模式表征,以反映时空异质性。具体而言,该模型构建在一个集成模块上,具有时间卷积和空间卷积。为实现自适应时空自监督学习,ST-SSL在属性层面和结构层面对交通流量图数据进行自适应增强。在增强的流量图的基础上,文章构建了两个基于自监督学习的辅助任务,通过时空异构感知增强对主要流量预测任务进行补充。文章的主要贡献如下:
该文章是第一个提出一种新的自监督学习框架来模拟交通流预测的时空异质性。所提出的预测框架可能会对其他实际的时空应用(例如空气质量预测)有所帮助。文章提出了一种基于图结构时空图的自适应异构感知数据增强方案,以减弱噪声扰动对预测的影响。
文章引入两个自监督学习任务来补充主要的交通预测任务,通过增强模型识别能力和对交通时空异质性的认识。
问题定义:给定若干历史时间步的交通流量图,文章所研究问题的目标是学习一个能够准确估计未来一个时间步内的所有区域的交通量的预测的函数。
 文章所提出的模型框架如下图中的图(a)所示。主要包括时空编码器(ST Encoder)、自适应图增广模块(Adaptive Graph Augmentation)。</
相关文章:
交通物流模型 | 基于自监督学习的交通流预测模型
交通物流模型 | 基于自监督学习的交通流预测模型 在智能交通系统中,准确预测不同时间段的城市交通流量是至关重要的。现有的方法存在两个关键的局限性:1、大多数模型集中预测所有区域的交通流量,而没有考虑空间异质性,即不同区域的交通流量分布可能存在偏差;2、现有模型无…...
 
343. 整数拆分 96.不同的二叉搜索树
343. 整数拆分 设dp[i]表示拆分 数字i 出来的正整数相乘值最大的值 (i - j) * j,和dp[i - j] * j是获得dp[i]的两种乘法,在里面求最大值可以得到当前dp[i]的最大值,但是这一次的得出的最大值如果赋值给dp[i],可能没有没赋值的dp[i]大&#…...
Vue3理解(9)
侦听器 1.计算属性允许我们声明性地计算衍生值,而在有些情况下,我们需要状态变化时执行一些方法例如修改DOM。 2.侦测数据源类型,watch的第一个参数可以市不同形式的‘数据源’,它可以市一个ref(包括计算属性),一个响应式对象&…...
CRM系统中的销售漏斗有什么作用?
随着数字化发展,越来越多的企业使用CRM销售管理系统提高销售管理水平,提升盈利能力。在这个过程中,销售漏斗起到了非常重要的作用。下面就来说说,CRM系统中的销售漏斗有什么作用? 一、销售数据可视化 CRM销售漏斗通过…...
 
项目(模块1:用户登陆流程分析)
验证登陆点流程...
 
2023年中国商用服务机器人行业发展概况分析:国产机器人厂商向海外进军[图]
商用服务机器人指在非制造业的商用服务场景中,用来替代或辅助人类进行服务性质工作的机器人;常见的商用场景中,商用服务机器人主要分为终端配送类机器人,商用清洁类机器人,引导讲解类机器人等,被广泛应用在…...
 
千兆光模块和万兆光模块的适用场景有哪些
随着数字化和物联网的普及,对网络速度和带宽的要求也越来越高。千兆光模块和万兆光模块是两种常见的光模块,在不同的应用场景中,它们各具优势。下面我们来探讨一下千兆光模块和万兆光模块的主要适用场景。 首先是企业网络。千兆光模块常用于…...
 
2 files found with path ‘lib/armeabi-v7a/liblog.so‘ from inputs:
下图两个子模块都用CMakeLists.txt引用了android的log库,编译后,在它们的build目录下都有liblog.so的文件。 四个CPU架构的文件夹下都有。 上层模块app不能决定使用哪一个,因此似乎做了合并,路径就是报错里的哪个路径,…...
 
qt中json类
目录 QJsonValue QJsonObject QJsonArray QJsonDocument 案例: Qt 5.0开始提供了对Json的支持,我们可以直接使用Qt提供的Json类进行数据的组织和解析,下面介绍4个常用的类。 QJsonValue 该类封装了JSON支持的数据类型。 布尔类型…...
 
NeurIPS 2023 | AD-PT:首个大规模点云自动驾驶预训练方案
概要 自动驾驶领域的一个长期愿景是,感知模型能够从大规模点云数据集中学习获得统一的表征,从而在不同任务或基准数据集中取得令人满意的结果。之前自监督预训练的工作遵循的范式是,在同一基准数据集上进行预训练和微调,这很难实…...
设计模式-结构型模式
文章目录 一、代理模式1.静态代理2.JDK动态代理3.CGLib动态代理4.三种代理对比 二、适配器模式1.类适配器模式2.对象适配器模式 三、装饰者模式静态代理和装饰者的区别 四、桥接模式五、外观模式六、组合模式七、享元模式 结构性模式描述如何将类或对象按某种布局组成更大的结构…...
 
BUUCTF学习(7): 随便注,固网杯
1、介绍 2、解题 11;show tables;# select * from 1919810931114514 concat(sel,ect from 1919810931114514 ) PEREPARE y from sql; ECCUTE y; -1; sEt sql CONCAt(se,lect * from 1919810931114514;); prePare stmt from sql; EXECUTE stmt; # 结束...
 
【文末福利】巧用Chat GPT快速提升职场能力:数据分析与新媒体运营
欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和技术。关…...
 
院内导航系统厂商分析
随着医疗技术的不断发展和医院规模的不断扩大,院内导航系统成为了现代化医院不可或缺的一部分。患者就医时,一个高效便捷的导航系统可以帮助他们快速找到目标科室,同时也能提高医院的整体运营效率。本文将推荐五家在院内导航市场具有竞争力的…...
 
MES系统作业调度
一、MES系统作业调度的概念和功能 作业调度是指在制造过程中,根据生产计划和实际情况,合理安排和调度各项任务和资源,以达到最佳的生产效率和资源利用率。MES系统作业调度功能涉及以下方面: 1. 任务计划与分配:MES系…...
 
C++入门-引用
C入门-引用 前置知识点:函数栈帧的复用前置知识点:类型转换时产生的临时变量1.含义2.代码形式3.引用的价值1.传参数传参效率测试补充:C与Java中引用的区别 2.引用做返回值(前置知识:栈帧复用)1.传值返回2.传引用返回传引用返回并用引用接收3.静态变量传引用返回4.引用做返回值真…...
问题:Qt中软件移植到笔记本中界面出现塌缩
这是由于软件之前运行的设备DPI较低,移植到笔记本中显示设备DPI较高,导致窗体显示进行了缩放。 解决方案,在main.cpp中加入以下代码: if(QT_VERSION>QT_VERSION_CHECK(5,6,0)) QCoreApplication::setAttribute(Qt::AA_EnableHi…...
NDK编译脚本:Android.mk or CMakeLists.txt
本文来自于:https://github.com/xufuji456/FFmpegAndroid/blob/master/doc/NDK_compile_shell.md 前言 Android NDK以前默认使用Android.mk与Application.mk进行构建,但是在Android Studio2.2之后推荐使用CMake进行编译。 CMake是跨平台编译工具&#…...
 
低代码提速应用开发
低代码介绍 低代码平台是指一种能够帮助企业快速交付业务应用的平台。自2000年以来,低代码市场一直充斥着40大大小小的各种玩家,比如国外的Appian、K2、Pega Systems、Salesforce和Ultimus,国内的H3 BPM。 2015年以后,这个市场更是…...
 
Hi3516DV500 SVP_NNN添加opencv库记录
默认没有带opencv库,但是实际项目中需要用到opencv库,因此添加一下此库; 1:编译opencv源码,这里具体可以参考 海思Hi3516移植opencv以及错误调试_海思hi3516摄像头开发-CSDN博客 2:在工程的根目录下新建…...
 
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
 
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
 
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
 
基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
 
给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
MySQL 主从同步异常处理
阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示ÿ…...
