当前位置: 首页 > news >正文

ReLU激活函数

LeakyReLU激活函数的具体用法请查看此篇博客:LeakyReLU激活函数

ReLU(Rectified Linear Unit)激活函数是深度学习中最常用的激活函数之一,它的数学表达式如下:

在这里插入图片描述
在这里插入图片描述

在这里,(x) 是输入,(f(x)) 是输出。ReLU激活函数的使用非常简单,它将输入(x)的所有负值变为零,而保持正值不变。这个激活函数具有以下用途和优点:

(1) 非线性映射:ReLU引入了非线性性质,使神经网络可以学习和表示非线性函数关系。这对于捕捉复杂的数据模式和特征非常重要。

(2)计算高效:ReLU计算非常简单,因为它只涉及一个比较和一个取最大值的操作。这使得训练神经网络更加高效。

(3) 缓解梯度消失问题:相比于一些其他激活函数,如Sigmoid和Tanh,ReLU在反向传播时有更大的梯度,可以缓解梯度消失问题,有助于更好地训练深层神经网络。

(4) 稀疏激活性质:在训练期间,一些神经元可能会因为输入值小于零而变得不活跃,这有助于网络的稀疏表示,从而增强了特征的分离性。

虽然ReLU激活函数有很多优点,但也存在一个缺点,即它可能导致神经元的"死亡"问题。这发生在训练期间,当某个神经元的权重更新导致该神经元对所有输入都产生负值输出,从而在以后的训练中一直保持不活跃。为了缓解这个问题,可以使用一些变种,如Leaky ReLU、Parametric ReLU(PReLU)或Exponential Linear Unit(ELU),它们允许小的负值输出,以提高训练的稳定性。选择哪种激活函数取决于具体的任务和网络架构。

本文主要包括以下内容:

  • 1. nn.ReLU的常见用法
  • 2. ReLU激活函数图像实现
  • 3.ReLU激活函数与Leaky ReLU 函数的不同之处

1. nn.ReLU的常见用法

在深度学习框架(如PyTorch、TensorFlow等)中,nn.ReLU 是一个常用的ReLU激活函数的实现。它通常用于神经网络层的构建,以引入非线性映射。以下是一个简单的示例,说明如何在PyTorch中使用nn.ReLU函数构建一个具有ReLU激活的神经网络层:

import torch
import torch.nn as nn# 创建一个具有ReLU激活函数的全连接层
input_size = 10
output_size = 5# 构建神经网络层
layer = nn.Linear(input_size, output_size)
activation = nn.ReLU()# 输入数据
input_data = torch.randn(1, input_size)  # 1个样本,输入特征维度为input_size# 前向传播
output = layer(input_data)
output_with_relu = activation(output)# 输出
print("Linear层输入:")
print(input_data)
print("原始输出:")
print(output)
print("经过ReLU激活后的输出:")
print(output_with_relu)#输出结果
#Linear层输入:
#tensor([[ 0.3462,  0.1461,  0.5487,  0.4915, -0.4398, -0.9100, -0.9388, -0.0821, 0.1354, -0.7431]])
#原始输出:
#tensor([[ 0.3832, -0.0762,  0.3498, -0.0882, -0.0115]], grad_fn=<AddmmBackward0>)
#经过ReLU激活后的输出:
#tensor([[0.3832, 0.0000, 0.3498, 0.0000, 0.0000]], grad_fn=<ReluBackward0>)

在上述示例中,我们首先导入PyTorch库,并使用nn.Linear创建一个全连接层,然后使用nn.ReLU创建一个ReLU激活函数。接着,我们使用随机生成的输入数据进行前向传播,并观察激活前后的输出结果。

nn.ReLU函数实际上是一个可以应用于PyTorch神经网络层的操作,而不是单独的数学函数。它是深度学习框架的一部分,使得构建神经网络层更加方便和高效。我们可以根据需要在神经网络中的不同层之间插入ReLU激活函数,以引入非线性性质。

2. ReLU激活函数图像实现

要输出ReLU函数的图像,我们可以使用Python的Matplotlib库。首先,确保已经安装了Matplotlib。然后,可以使用以下示例代码来绘制ReLU函数的图像:

import numpy as np
import matplotlib.pyplot as plt# 定义ReLU函数
def relu(x):return np.maximum(0, x)# 生成一系列输入值
x = np.linspace(-5, 5, 100)# 计算ReLU函数的输出
y = relu(x)# 绘制ReLU函数图像
plt.plot(x, y, label='ReLU', color='b')
plt.xlabel('Input')
plt.ylabel('Output')
plt.title('ReLU Function')
plt.axhline(0, color='black', linewidth=0.5, linestyle='--')
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend()
plt.show()

运行此段代码,即可得到LeakyReLU函数图像
在这里插入图片描述

这段代码首先定义了一个ReLU函数 relu(x),然后生成一系列输入值 x,计算ReLU函数的输出 y,最后使用Matplotlib绘制了ReLU函数的图像。

运行这段代码将显示一个包含ReLU函数图像的窗口,其中x轴表示输入值,y轴表示ReLU函数的输出。图中的ReLU函数将所有负数部分映射为零,而正数部分保持不变。

ReLU(Rectified Linear Unit)函数和Leaky ReLU函数都是用于神经网络中的激活函数,它们在引入非线性性质时有些不同。以下是它们的主要区别:

3.ReLU激活函数与Leaky ReLU 函数的不同之处

(1) ReLU (Rectified Linear Unit) 函数

  • ReLU函数是非常简单的激活函数,其数学表示为:
    在这里插入图片描述

  • 对于正数输入,ReLU不做任何修改,保持不变。

  • 对于负数输入,ReLU将其映射为零,即输出为零。

  • ReLU函数是分段线性的,具有非常快的计算速度。

  • 主要问题是可能导致神经元的"死亡",即在训练中,某些神经元可能永远保持不活跃。

(2) Leaky ReLU 函数

  • Leaky ReLU是对ReLU的改进,旨在解决ReLU的"死亡"问题。

  • Leaky ReLU函数引入一个小的斜率(通常接近零)以处理负数输入,其数学表示为:
    在这里插入图片描述

  • 其中,α是一个小正数,通常在接近零的范围内,例如0.01。

  • Leaky ReLU允许负数部分不完全变为零,从而在反向传播时具有梯度,有助于减轻梯度消失问题。

选择使用哪种激活函数通常取决于具体的问题和网络架构。ReLU通常在许多情况下表现良好,但可能需要小心处理"死亡"神经元的问题。Leaky ReLU是一个改进,可以减轻这个问题,但需要选择适当的(\alpha)值。在实践中,通常会尝试不同的激活函数,并根据性能选择最适合的那个。

相关文章:

ReLU激活函数

LeakyReLU激活函数的具体用法请查看此篇博客&#xff1a;LeakyReLU激活函数 ReLU&#xff08;Rectified Linear Unit&#xff09;激活函数是深度学习中最常用的激活函数之一&#xff0c;它的数学表达式如下&#xff1a; 在这里&#xff0c;(x) 是输入&#xff0c;(f(x)) 是输…...

【Android】adjustViewBounds 的理解和使用

理解 adjustViewBounds 是一个 ImageView 的属性&#xff0c;用于调整 ImageView 的边界以适应图像的尺寸。当设置为 true 时&#xff0c;ImageView 的边界将根据图像的宽高比例进行调整&#xff0c;以确保图像完全显示在 ImageView 内部。 理解和使用 adjustViewBounds 的步…...

Redis知识补充

大key删除 unLink scan分批删除 渐进式rehash Redis笔记&#xff1a;Redis的字典什么时候进行Rehash&#xff1f;_redis什么时候进行rehash-CSDN博客...

IIS 部署.NetCore,最细步骤

服务器安装环境 将.net core程序部署到IIS总体需要经过以下3个大步骤&#xff0c;其中在IIS上配置网站有些比较繁琐&#xff0c;我都会逐一给出详细步骤。 <1>安装IIS和.NetCORE运行时程序 <2>以文件的形式发布.NETCORE程序到指定目录 <3>IIS上面建立网站…...

4.查询用户的累计消费金额及VIP等级

思路分析&#xff1a; &#xff08;1&#xff09;按照user_id及create_date 分组求消费金额total_amount &#xff08;2&#xff09;开窗计算同user_id下的累计销售金额sum(total_amount) over(partition by user_id order by create_date ROWS BETWEEN UNBOUNDED PRECEDING AN…...

解决MySQL错误-this is incompatible with sql_mode=only_full_group_by

报错 Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column ‘数据库名.表名.字段名’ which is not functionally dependent on columns in GROUP BY clause; this is incompatible with sql_modeonly_full_group_by 原因 MySQL错误-t…...

UDP通信-广播、组播

UDP的三种通信方式 单播&#xff1a;单台主机与单台主机之间的通信。 广播&#xff1a;当前主机与所在网络中的所有主机通信。 组播&#xff1a;当前主机与选定的一组主机的通信。 UDP如何实现广播 使用广播地址&#xff1a;255.255.255.255 具体操作&#xff1a; 发送端…...

10-bean创建流程1一finishBeanFactoryInitialization(ConfigurableListableBeanFactory

文章目录 1. 方法的主要流程2. ConversionService-如何自定义转换器3. AbstractBeanFactory#getMergedLocalBeanDefinition(String beanName)4.FactoryBean实例化5.内置值处理器1. 方法的主要流程 /*** Finish the initialization of this contexts bean factory,* initializi…...

专题三:穷举、暴搜、深搜、回溯、剪枝【递归、搜索、回溯】

1、全排列 class Solution { public:vector<vector<int>> ret;vector<int> path;bool check[7];void dfs(vector<int>& nums){if(nums.size() path.size()) {ret.push_back(path);return;}for(int i 0;i < nums.size();i){if(check[i] fals…...

国科云SSL证书讲堂:SSL证书安装常见问题盘点

SSL证书能够对网站传输数据进行加密处理&#xff0c;有效提升网站的数据安全防护能力&#xff0c;逐渐被越来越多的政企网站所应用。但在安装使用SSL证书时&#xff0c;经常会发生各种意想不到的问题&#xff0c;对网站的数据安全和正常访问造成严重影响。本文国科云对安装使用…...

Python3无法调用Sqlalchemy解决(mysqldb)

原因 在安装Sqlalchemy后运行程序报错 无法导入mysqldb&#xff0c;缺失模块 ImportError: No module named ‘MySQLdb’ 既然缺少 MySQLdb 这个模块&#xff0c;尝试按照正常的想法执行 pip install MySQLdbpip install mysql-python 应该能解决&#xff0c;但是却找不到…...

2023/10/15总结

学习总结 最近开始写项目了&#xff0c;然后写的过程中遇到了跨域问题。 为什么会出现跨域问题 由于浏览器的同源策略限制。同源策略是一种约定&#xff0c;它是浏览器最核心也是最基本的安全功能。如果缺少了同源策略&#xff0c;那么浏览器的正常功能可能都会收到影响。所谓…...

关于图像分割SDK的一些基础认识

随着科技的不断发展&#xff0c;图像分割SDK已经成为了一个备受关注的话题。而在众多图像分割SDK中&#xff0c;美摄图像分割SDK以其独特的功能和优势脱颖而出。本文将从美摄图像分割SDK的企业价值和互联网娱乐方面&#xff0c;介绍其宣传文章的具体写作规范。 在企业价值方面&…...

SpringMVC之国际化上传下载

spring项目中的国际化 1&#xff09;提供中英两种资源文件 i18n_en_US.properties i18n_zh_CN.properties 2&#xff09;配置国际化资源文件&#xff08;在spring配置文件中添加&#xff0c;例如spring-mvc.xml&#xff09; <bean id"messageSource" class&quo…...

TigerVNC自动设置密码脚本

新建sh脚本&#xff0c;复制以下命令。设置ssh终端密码和vncserver密码后&#xff0c;运行ssh脚本&#xff0c;即可设置修改vncserver密码。 #!/bin/bash vncpwd"vncserver密码" sshpwd"ssh终端密码"expect << EOFset timeout 10spawn ssh root127.…...

什么是美体SDK?美摄美颜美体SDK对接开发指南

在当今的数字世界中&#xff0c;人们对自我表达和形象展示的需求越来越高。美体SDK应运而生&#xff0c;为用户提供了一种全新的美颜美体体验&#xff0c;让每一个人都能享受到个性化的美丽与自信。 一、美体SDK的特点 轻量级&#xff1a;美体SDK体积小巧&#xff0c;不会对用…...

【Java集合中各种数据结构的方法汇总】

文章目录 Java集合中各种数据结构的方法汇总数组 ArrayList 、LinkedList链表 LinkedList栈 Stack队列 ArrayQueue、LinkedList哈希表 HashMap堆 PriorityQueue Java集合中各种数据结构的方法汇总 获取大小&#xff1a;fun.size(); 判断是否为空&#xff1a;fun.isEmpty(); …...

算法通过村第十四关-堆|白银笔记|经典问题

文章目录 前言在数组中寻找第K大的元素堆排序原理合并K个排序链表总结 前言 提示&#xff1a;想要从讨厌的地方飞出来&#xff0c;就得有藏起来的翅膀。 --三岛由纪夫《萨德侯爵夫人》 这里我们主要看一下经典的题目&#xff0c;这三个题目来说都是堆的热点问题。重点再理解处理…...

如何正确维护实验室超声波清洗器?

实验室一直被视为一个严谨而严肃的场所&#xff0c;实验应遵循一定的步骤&#xff0c;使用的设备也经历了详细的选择&#xff0c;如实验室超声波清洗机&#xff0c;其特点远强于一般类型的清洗机。专门负责采购的实验室人员一般对优质服务的实验室超声波清洗机印象深刻&#xf…...

DID赛道前列的生物识别技术,开启Web3时代的大门—MXT

互联网发展的十字路口 互联网从上世纪90年代初发展至今&#xff0c;历经30年&#xff0c;她改变了整个人类的生活方式、沟通形式以及社会发展模式&#xff0c;她的影响早已渗透到了世界的各个角落。而如今&#xff0c;我们似乎正站在一个新的十字路口&#xff0c;一个互联网将…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...