树模型(三)决策树
决策树是什么?决策树(decision tree)是一种基本的分类与回归方法。

长方形代表判断模块 (decision block),椭圆形成代表终止模块(terminating block),表示已经得出结论,可以终止运行。从判断模块引出的左右箭头称作为分支(branch),它可以达到另一个判断模块或者终止模块。我们还可以这样理解,分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点(node) 和有向边 (directed edge) 组成。结点有两种类型:内部结点 (internal node) 和叶结点(leaf node)。内部结点表示一个特征或属性,叶结点表示一个类。
决策树构建
特征选择在于选取对训练数据具有分类能力的特征。这样可以提高决策树学习的效率,如果利用一个特征进行分类的结果与随机分类的结果没有很大差别,则称这个特征是没有分类能力的。经验上扔掉这样的特征对决策树学习的精度影响不大。通常特征选择的标准是信息增益 (information gain) 或信息增益比,为了简单,本文使用信息增益作为选择特征的标准。那么,什么是信息增益?在讲解信息增益之前,让我们看一组实例,贷款申请样本数据表。

在划分数据集之后信息发生的变化称为信息增益,知道如何计算信息增益,我们就可以计算每个特征值划分数据集获得的信息增益,获得信息增益最高的特征就是最好的选择。
比较特征的信息增益,由于特征 A3(有自己的房子) 的信息增益值最大,所以选择 A3 作为最优特征。
它将训练集 D 划分为两个子集 D1(A3 取值为 “是”) 和 D2(A3 取值为 “否”)。由于 D1 只有同一类的样本点,所以它成为一个叶结点,结点的类标记为 “是”。对 D2 则需要从特征 A1(年龄),A2(有工作) 和 A4(信贷情况) 中选择新的特征,计算各个特征的信息增益:

根据计算,选择信息增益最大的特征 A2(有工作) 作为结点的特征。由于 A2 有两个可能取值,从这一结点引出两个子结点:一个对应 “是”(有工作) 的子结点,包含 3 个样本,它们属于同一类,所以这是一个叶结点,类标记为 “是”;另一个是对应 “否”(无工作) 的子结点,包含 6 个样本,它们也属于同一类,所以这也是一个叶结点,类标记为 “否”。这样就生成了一个决策树,该决策树只用了两个特征 (有两个内部结点),生成的决策树如下图所示。

这种以信息增益为判断标准来构建决策树的方法为ID3
ID3在面对一个稀疏、有大量结点的特征时会出现问题
C4.5:使用信息增益率,解决ID3问题,考虑自身熵
CART:使用GINI系数来当做衡量标准
预剪枝方法
决策树过拟合风险很大,理论上可以完全分开数据,如果树足够庞大,每个叶子结点就是一个数据
- 预剪枝
限制深度,叶子结点个数,叶子结点样本数,信息增益量等
- 后剪枝
建立完决策树后进行剪枝操作
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
samples:当前结点所有样本数
value:不同类别样本的数量
通过一定的衡量标准,叶子结点越多,损失越大
C α ( T ) = C ( T ) + α ⋅ ∣ T l e a f ∣ C_\alpha(T)=C(T)+\alpha\cdot\mid{T_{leaf}}\mid Cα(T)=C(T)+α⋅∣Tleaf∣
相关文章:
树模型(三)决策树
决策树是什么?决策树(decision tree)是一种基本的分类与回归方法。 长方形代表判断模块 (decision block),椭圆形成代表终止模块(terminating block),表示已经得出结论,可以终止运行。从判断模块引出的左右箭头称作为分支(branch)…...
vueday01——使用属性绑定+ref属性定位获取id
1.属性绑定(Attribute 绑定) 第一种写法 <div v-bind:id"refValue"> content </div> 第二种写法(省略掉v-bind) <div :id"refValue"> content </div> 2.代码展示 <template…...
LeetCode 260. 只出现一次的数字 III:异或
【LetMeFly】260.只出现一次的数字 III 力扣题目链接:https://leetcode.cn/problems/single-number-iii/ 给你一个整数数组 nums,其中恰好有两个元素只出现一次,其余所有元素均出现两次。 找出只出现一次的那两个元素。你可以按 任意顺序 返…...
使用PyTorch解决多分类问题:构建、训练和评估深度学习模型
💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…...
基于nodejs+vue网课学习平台
各功能简要描述如下: 1个人信息管理:包括对学生用户、老师和管理员的信息进行录入、修改,以及老师信息的审核等 2在库课程查询:用于学生用户查询相关课程的功能 3在库老师查询:用于学生用户查询相关老师教学的所有课程的功能。 4在库学校查询:用于学生用户查询相关学…...
读书笔记:Effective C++ 2.0 版,条款13(初始化顺序==声明顺序)、条款14(基类有虚析构)
条款13: 初始化列表中成员列出的顺序和它们在类中声明的顺序相同 类成员是按照它们在类里被声明的顺序进行初始化的,和它们在成员初始化列表中列出的顺序没一点关系。 根本原因可能是考虑到内存的分布,按照定义顺序进行排列。 另外,初始化列表…...
flutter开发实战-下拉刷新与上拉加载更多实现
flutter开发实战-下拉刷新与上拉加载更多实现 在开发中经常遇到列表需要下拉刷新与上拉加载更多,这里使用EasyRefresh,版本是3.3.21 一、什么是EasyRefresh EasyRefresh可以在Flutter应用程序上轻松实现下拉刷新和上拉加载。它几乎支持所有Flutter Sc…...
旧手机热点机改造成服务器方案
如果你也跟我一样有这种想法, 那真的太酷了!!! ok,前提是得有root,不然体验大打折扣 目录 目录 1.做一个能爬墙能走百度直连的热点机(做热点机用) 2.做emby视频服务器 3.做文件服务, 存取文件 4.装青龙面板,跑一些定时任务 5.做远程摄像头监控 6.做web服务器 7.内网穿…...
网工实验笔记:策略路由PBR的应用场景
一、概述 PBR(Policy-Based Routing,策略路由):PBR使得网络设备不仅能够基于报文的目的IP地址进行数据转发,更能基于其他元素进行数据转发,例如源IP地址、源MAC地址、目的MAC地址、源端口号、目的端口号、…...
webrtc快速入门——使用 WebRTC 拍摄静止的照片
文章目录 使用 getUserMedia() 拍摄静态照片HTML 标记JavaScript 代码初始化startup() 函数获取元素引用获取流媒体 监听视频开始播放处理按钮上的点击包装 startup() 方法 清理照片框从流中捕获帧 例子代码HTML代码CSS代码JavaScript代码 过滤器使用特定设备 使用 getUserMedi…...
预约按摩app软件开发定制足浴SPA上们服务小程序
同城按摩小程序是一种基于地理位置服务的小程序,它可以帮助用户快速找到附近的按摩师,并提供在线预约、评价、支付等功能。用户可以通过手机或者其他移动设备访问同城按摩小程序,实现足不出户就能预约到专业的按摩服务。 一、同城按摩小程序的…...
jenkins出错与恢复
如果你的jenkins出现了如下图所示问题(比如不能下载插件,无法保存任务等),这个时候就需要重新安装了。 一、卸载干净jenknis 要彻底卸载 Jenkins,您可以按照以下步骤进行操作: 1、停止 Jenkins 服务&…...
ssh免密登录的原理RSA非对称加密的理解
RSA非对称加密,是采用公钥加密私钥解密的原则。 举个例子SSH的免密登录 SSH免密登录是通过使用公钥加密技术实现的。以下是SSH免密登录的原理: 1. 生成密钥对:首先,在客户端上生成一对密钥,包括一个私钥和一个公钥。私…...
【监督学习】基于合取子句进化算法(CCEA)和析取范式进化算法(DNFEA)解决分类问题(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
力扣每日一题41:缺失的第一个正数
题目描述: 给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数。 请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。 示例 1: 输入:nums [1,2,0] 输出:3示例 2: 输…...
OpenCV与mediapipe实践
1. 安装前准备 开发环境:vscode venv 设置vscode, 建立项目,如: t1/src, 用vscode打开,新建终端Terminal,这时可能会有错误产生,解决办法: 运行命令:Set-ExecutionPolicy -ExecutionPolicy …...
【css拾遗】粘性布局实现有滚动条的情况下,按钮固定在页面底部展示
效果: 滚动条滚动过程中,按钮的位置位于手机的底部 滚动条滚到底部时,按钮的位置正常 这个position:sticky真的好用,我原先的想法是利用滚动条滚动事件去控制,没想到css就可以解决 <template><view class…...
git 创建并配置 GitHub 连接密钥
前记: git svn sourcetree gitee github gitlab gitblit gitbucket gitolite gogs 版本控制 | 仓库管理 ---- 系列工程笔记. Platform:Windows 10 Git version:git version 2.32.0.windows.1 Function: git 创建并配置 GitHub…...
使用Premiere、PhotoShop和Audition做视频特效
今天接到一个做视频的任务,给一个精忠报国的视频,要求: ①去掉人声,就是将唱歌的人声去掉,只留下伴奏; ②截图视频中的横幅,做一个展开的效果,类似卷纸慢慢展开;…...
vueday01——动态参数
我们现在知道了 v-bind:的语法糖是: v-on:的语法糖是 我们现在来尝试一下,定义一个动态参数模拟点击事件按钮 <div :id"idValue" ref"myDiv">我是待测div{{ resultId }}</div> <button v-on:[eventName]"doSomething&…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
