stable diffusion的模型选择,采样器选择,关键词
一、Stable Diffusion的模型选择:
模型下载地址:https://civitai.com/,需要科学上网。
- Deliberate:全能模型,prompt越详细生成的图片质量越好
- Realistic Vision:现实模型,生成仿真式图片,它的真实性搭配任何人物的Lora,就可以生成照片级的作品
- DreamShaper:V5版本有真实感和噪声抵消的优化,模型初衷是为了肖像画,善于复杂的细节和鲜艳的色彩,梦幻的插画效果
- Counterfeit:高质量的动漫风格模型,建议搭配easy negative,能生成精确和令人惊讶的结果,动漫创作者很适合
- MeinaMix:生成动漫人物效果非常好,较少提示下,完成出色的艺术创作
- bad-picture negative embedding for ChilloutMix:咳咳咳
二、Stable Diffusion十几种采样器的区别:
采样是指图像去噪的过程,从而产生清晰的图,理论上采样步数越多图片细节越多,但过多的采样会造成过拟合。
- Euler:欧拉方法最简答直接的采样器,非常受欢迎
- Heun:改进欧拉方法,提高了精度但耗时比欧拉方法多一倍
- LMS:线性多步法,速度与质量与欧拉方法相差不多
- 以下三个是常微分方程(ODE)的老式求解器,已经存在一百多年了,推荐设置步数在20-30之间
- DDIM:去噪扩散隐式模型,是最早为Stable Diffusion设计的采样器之一,
- PLMS:伪线性多步法,是LMS更新更快的替代方案,已落后,不再广泛使用。
- DPM:2022年新发布的采样器,优秀的收敛和图像质量。
- DPM2:相比DPM更准确但更慢一些
- DPM++:是对DPM系列的改进
- DPM fast:我感觉没存在的必要,除非步数设置在40+,否则很难跑出能看的图
- UniPC:新开发的采样器,收敛速度略慢于欧拉方法,但质量相当,推荐使用较高的步数
说明:
- -a:后缀带a的采样器为祖先采样器,区别在于它们会在每步中添加随机噪声,如果需要出更多元的图像,可以选择带a的采样器。如果在意可控性、稳定性、可重现的图像,就要避免选择带a的方法。所有的祖先采样器都是不收敛的,所以在相同参数和种子的情况下,生成的图片会有不同
- -karras:所有后缀带有karras的采样器是使用了karras噪声调度,使用karras噪声会产生更好的图片质量
建议:
- 想要快速、融合、新颖且质量不错的东西,最好的选择是DPM++ 2M karras、UniPC,搭配20-30步数
- 想要高质量、且不关心收敛性,推荐DPM++ SDE karras,搭配8-12步数;DDIM搭配10-15步数
- 简单图像,Euler,Heun是不错的选择,推荐设置步数在20-30之间
三、prompt提示词权重设置
a dog, a cat:越靠前的提示词,权重越高
- 加权重方法——小括号():(a dog), a cat:一个小括号相当于权重乘1.1倍,两个小括号相当于乘1.1倍后再乘1.1倍,小括号越多权重越高
- 去权重方法——中括号[]:[a dog], a cat:相当于除1.1倍,多个中括号以此类推
调整权重更方便的写法:(prompt1:数字),(prompt2:数字)——(a dog:0.5),(a cat:1.5)——0.5权重狗,1.5权重猫
四、prompt提示词六要素:
推荐两个提示词网站:
元素法典
Danbooru 标签超市
人物,画风,场景,环境,画质,视角
1、人物:
- 性别:1 girl, 2 boys, loli, cat girl
- 服饰:long sleeves, gloves coat, bangle, armband
- 发型:long hair, bangs, black hair,
- 五官:cat ears, small eyes, big mouth, blue eyes
- 表情:smile, open mouth, tears, blush
- 动作:standing, lying, head tilt, tying hair
2、画风
- 插画风:illustration, painting, paintbrush
- 二次元:anime, comic, game CG,
- 写实系:photorealistic, realistic, photograph
- 复古风:close-up,upper body, pov, retro artstyle
- 手绘风:traditional media
- 赛博朋克:cyberpunk,
3、场景
- 室内室外:indoor outdoor
- 大场景:forest city, street, field, garden, village
- 小细节:tree, bush, flower, tower, fences
4、环境
- 白天黑夜:day night
- 时段:morning, sunset
- 光线:sunlight, bright, dark
- 天空:blue sky, starry sky, shooting star, full moon
5、画质
- 正向高画质:highres, absurdres, official art, best quality, 8k,masterpiece, game cg, original
- 负向低品质:lowres, parody, scan, parody, bad anatomy, bad hands, fewer digits, extra digit, missing arms, watermark, signature, text,
6、视角
- 距离:close-up, distant
- 人物比例:full body, upper body
- 观察角度:from above, from below, view of back, form side
- 镜头类型:wide shot, Sony A7 3, fish eye
相关文章:
stable diffusion的模型选择,采样器选择,关键词
一、Stable Diffusion的模型选择: 模型下载地址:https://civitai.com/,需要科学上网。 Deliberate:全能模型,prompt越详细生成的图片质量越好Realistic Vision:现实模型,生成仿真式图片&#…...

BI零售数据分析:以自身视角展开分析
随着零售业务不断扩展,市场竞争不断加剧,各层级的销售管理人员都急需一张能快速查看销售数据分析报表,能从中知道自己管辖内的业务最近或过去的情况,并依次为依据科学优化销售管理措施。这就要求零售数据分析报表信息足够多、数据…...
Maven 使用教程(三)
一、如何使用外部依赖项? 您可能已经注意到POM中的一个dependencies元素,我们一直在使用它作为示例。事实上,您一直在使用外部依赖项,但在这里我们将更详细地讨论它是如何工作的。有关更全面的介绍,请参阅我们的依赖机…...
行秋找工作的记录
2023-10-17 15:35-16:00 中移(苏州)研发中心面试 问了项目,还有一些我没准备到的Java八股文:Java类的加载过程,发射机制,redis存储结构,二叉平衡树等。但我也都没回答上来。应该无了。 2023-1…...

vue项目打包,使用externals抽离公共的第三方库
封装了一个插件,用来vue打包抽离公共的第三方库,使用unplugin进行插件开发,vite对应的功能使用了vite-plugin-externals进行二次开发 github地址 npm地址 hfex-auto-externals-plugin 自动注入插件,使用 unplugin 和 html-webpack-plugin进…...

九阳真经之各大厂校招
大学计算机系的同学要怎么努力才能校招进大厂? 秋招的大公司非常多,也是非常好的,赶上了秋招,你基本工作就敲定了,在整个应届毕业生的人群中你就占据很大的优势了。 如何准备应届校招? 一、做好规划,把…...

Go语言入门心法(五): 函数
Go语言入门心法(一): 基础语法 Go语言入门心法(二): 结构体 Go语言入门心法(三): 接口 Go语言入门心法(四): 异常体系 Go语言入门心法(五): 函数 一: go语言函数认知 函数相关认知升维:函数的功能就是把相对独立的某个相同或者时类型的功能抽象处理,使之成为一个…...
gitignore文件的语法规则
行注释:以"#"符号开头的行表示注释,Git会忽略这些行。空行:空行会被忽略。文件和目录规则: 可以使用通配符来匹配文件和目录。常用的通配符有: “*”:匹配0个或多个字符。“?”:匹配…...

vscode提示扩展主机在过去5分钟内意外终止了3次,解决方法
参考链接: https://code.visualstudio.com/blogs/2021/02/16/extension-bisect https://code.visualstudio.com/docs/setup/uninstall#_clean-uninstall 使用vscode打开jupyter notebook记事本时,窗口右下角提示扩展主机在过去5分钟内意外终止了3次 而…...

【算法挨揍日记】day16——525. 连续数组、1314. 矩阵区域和
525. 连续数组 525. 连续数组 题目描述: 给定一个二进制数组 nums , 找到含有相同数量的 0 和 1 的最长连续子数组,并返回该子数组的长度。 解题思路: 本题的元素只有0和1,根据题目意思,我们可以把题目看成找一段最…...

k8s-13 存储之secret
Secret 对象类型用来保存敏感信息,例如密码、OAuth 令牌和 ssh key。 敏感信息放在 secret 中比放在 Pod 的定义或者容器镜像中来说更加安全和灵活 。 Pod 可以用两种方式使用 secret:作为 volume 中的文件被挂载到 pod 中的一个或者多个容器里 当 kubelet 为 pod 拉…...
什么是高阶成分(HOC)
高阶组件(Higher-Order Component,HOC)是一种在React中用于组件复用和逻辑抽象的设计模式。它本质上是一个函数,接受一个组件作为参数,并返回一个新的组件。 1. HOC的作用: HOC允许我们在不修改原始组件的…...
深度学习硬件配置推荐
目录 1. 基础推荐2. GPU显存与内存是一个1:4的配比?3. deep learning 入门和kaggle比赛4. 有些 Kaggle 比赛数据集很大,可能需要更多的 GPU 显存,请推荐显存4. GDDR6和HBM25. HDD 或 SATA SSD1. 基础推荐 假设您作为一个深度学习入门学者的需求,以下是一份推荐的电脑硬件配…...

数仓建设(一)
想了想,我们的数仓的建设是基于大数据平台进行的,中间也经历了比较曲折的过程。 每个行业都有自身的业务区别,不过很多还是比较相通的。 本文将全面讲解数仓建设规范,从数据模型规范,到数仓公共规范,数仓各…...

Springboot整合taos时序数据库TDengine
1.首先安装TDengine服务端在linux上 TDengine多种安装包的安装和卸载 - TDengine | 涛思数据安装过程直接去官网看,非常详细简单 2.出现的问题 windows连接 invalid app version 版本不对应 版本不对应的问题,需要在linux上安装的版本和windows client版本一致,不然w…...

Epoch、批量大小、迭代次数
梯度下降 它是 机器学习中使用的迭代 优化算法,用于找到最佳结果(曲线的最小值)。 坡度 是指 斜坡的倾斜度或倾斜度 梯度下降有一个称为 学习率的参数。 正如您在上图(左)中看到的,最初步长较大&#…...
qt-C++笔记之清空QVBoxLayout中的QCheckBox
qt-C笔记之清空QVBoxLayout中的QCheckBox QVBoxLayout 和 QCheckBox 是两个类,都是 PyQt/PySide 中用于创建图形用户界面 (GUI) 的工具。它们通常与 Qt 库一起使用,Qt 是一个流行的跨平台 GUI 库,可以用于创建桌面应用程序。 QVBoxLayout: Q…...
pc微信39223部分算法call偏移
WechatWin.dll 基址:78FD0000 MD5_Init_call 7AF48C80 | 56 | push esi | 7AF48C81 | 8B7424 08 | mov esi,dword ptr ss:[esp0x8] | 7AF48C85 | 6A 4C | push 0x4C …...

尚硅谷Flink(三)时间、窗口
1 🎰🎲🕹️ 🎰时间、窗口 🎲窗口 🕹️是啥 Flink 是一种流式计算引擎,主要是来处理无界数据流的,数据源源不断、无穷无尽。想要更加方便高效地处理无界流,一种方式就…...

MPLS基础
1. MPLS原理与配置 MPLS基础 (1)MPLS概念 MPLS位于TCP/IP协议栈中的数据链路层和网络层之间,可以向所有网络层提供服务。 通过在数据链路层和网络层之间增加额外的MPLS头部,基于MPLS头部实现数据快速转发。 本课程仅介绍MPLS在…...

【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...

vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...

如何在Windows本机安装Python并确保与Python.NET兼容
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...

高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。
2024 年,高端封装市场规模为 80 亿美元,预计到 2030 年将超过 280 亿美元,2024-2030 年复合年增长率为 23%。 细分到各个终端市场,最大的高端性能封装市场是“电信和基础设施”,2024 年该市场创造了超过 67% 的收入。…...

React、Git、计网、发展趋势等内容——前端面试宝典(字节、小红书和美团)
React React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么,Fiber架构,面试向面试官介绍,详细解释 用户: React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么,Fiber架构,面试向面试官介绍&#x…...