当前位置: 首页 > news >正文

P5461 赦免战俘

题目描述

现有 2 n × 2 n ( n ≤ 10 ) 2^n\times 2^n (n\le10) 2n×2n(n10) 名作弊者站成一个正方形方阵等候 kkksc03 的发落。kkksc03 决定赦免一些作弊者。他将正方形矩阵均分为 4 个更小的正方形矩阵,每个更小的矩阵的边长是原矩阵的一半。其中左上角那一个矩阵的所有作弊者都将得到赦免,剩下 3 个小矩阵中,每一个矩阵继续分为 4 个更小的矩阵,然后通过同样的方式赦免作弊者……直到矩阵无法再分下去为止。所有没有被赦免的作弊者都将被处以棕名处罚。

给出 n n n,请输出每名作弊者的命运,其中 0 代表被赦免,1 代表不被赦免。

输入格式

一个整数 n n n

输出格式

2 n × 2 n 2^n \times 2^n 2n×2n 的 01 矩阵,代表每个人是否被赦免。数字之间有一个空格。

样例输入

3

样例输出

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

问题分析
2n 就是n个2相乘。比如,21 =2,22 =4,25 =32,210 =1024。
2n 可以被一直除以2进行均分,直到只剩1为止。

长度是2n的一维数组,可以被一直均分成两份,直到只剩一个格子为止。
在这里插入图片描述

2n × 2n 的二维数组(矩阵),可以被一直均分成4份,直到只剩一个格子为止。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如何使用代码将矩阵均分成4份呢?
用(x1,y1)表示左上角的格子,(x2,y2)表示右下角的格子,那么(x1,y1)和(x2,y2)就确定了一个唯一 的矩阵。
如果找到了被均分成的4个小矩阵的左上格子和右下格子,那么4个小矩阵也就被确定了。

令 mx = (x1+x2)/2 , my=(y1+y2)/2,就可以得到如下结果:

  • 左上方的1/4矩阵,左上角的格子是(x1,y1),右下角的格子是( mx, my)。
  • 右上方的1/4矩阵,左上角的格子是(x1,my+1),右下角的格子是( mx, y2)。
  • 左下方的1/4矩阵,左上角的格子是(mx+1,
    y1),右下角的格子是( x2, my)。
  • 右下方的1/4矩阵,左上角的格子是(mx+1, my+1),右下角的格子是( x2, y2)。

C++中,通过位运算 1<<n 可以快速计算出 2n的值。
由于 n≤10 ,所以,数组的行列数可以设置为 (1<<10)+5。

作弊者只有被赦免和不被赦免两种状态,定义成bool类型数组就够了。

将矩阵不断均分的过程可以用递归函数实现。递归结束条件是,矩阵只有1×1大小,这个时候就不能继续均分了。
递归步骤如下:
1、计算出mx,my;
2、将左上矩阵中的值改为true。
3、递归处理右上、左下和右下的矩阵

参考代码

#include<bits/stdc++.h>
using namespace std;
const int M=(1<<10)+5;
bool a[M][M]; //a[i][j]=true表示被赦免,否则表示不被赦免
//(x1,y1)-正方形左上角;(x2,y2)-正方形右下角
void dfs(int x1,int y1,int x2,int y2) {//当(x1,y1)和(x2,y2)指向同一个格子时,不能再分。if(x1==x2&&y1==y2) return;//否则,继续将正方形均分成4个更小的正方形//计算左上正方形的左下角方格下标int mx=(x1+x2)/2,my=(y1+y2)/2;  //左上角的赦免for(int i=x1; i<=mx; i++)for(int j=y1; j<=my; j++)a[i][j]=true;//递归处理其他3个小矩阵dfs(x1,my+1,mx,y2); //右上dfs(mx+1,y1,x2,my); //左下 dfs(mx+1,my+1,x2,y2); //右下 
}
int main() {int n;cin>>n;n=1<<n;dfs(1,1,n,n);//按要求输出:0 代表被赦免,1 代表不被赦免。for(int i=1; i<=n; i++) {for(int j=1; j<=n; j++)printf("%d ",!a[i][j]);printf("\n");}return 0;
}

相关文章:

P5461 赦免战俘

题目描述 现有 2 n 2 n ( n ≤ 10 ) 2^n\times 2^n (n\le10) 2n2n(n≤10) 名作弊者站成一个正方形方阵等候 kkksc03 的发落。kkksc03 决定赦免一些作弊者。他将正方形矩阵均分为 4 个更小的正方形矩阵&#xff0c;每个更小的矩阵的边长是原矩阵的一半。其中左上角那一个矩阵…...

【工具】转码silk格式为mp3

【工具】转码slk格式为mp3 前提 安装 ffmpeg 【安装】Linux安装ffmpeg_linux安装ffmpeg4.4_我是Superman丶的博客-CSDN博客 GitHub - kn007/silk-v3-decoder: [Skype Silk Codec SDK]Decode silk v3 audio files (like wechat amr, aud files, qq slk files) and convert to o…...

蓝桥杯每日一题2023.10.18

题目描述 特别数的和 - 蓝桥云课 (lanqiao.cn) 题目分析 简单枚举每一个可行的数 #include<bits/stdc.h> using namespace std; int flag, ans; int main() {int n;cin >> n;for(int i 1; i < n; i ){flag 0;int x i;while(x){int y x % 10;if(y 2 || y…...

大数据开发中的秘密武器:探索Hadoop纠删码的奇妙世界

随着大数据技术的发展&#xff0c;HDFS作为Hadoop的核心模块之一得到了广泛的应用。为了系统的可靠性&#xff0c;HDFS通过复制来实现这种机制。但在HDFS中每一份数据都有两个副本&#xff0c;这也使得存储利用率仅为1/3&#xff0c;每TB数据都需要占用3TB的存储空间。因此&…...

华为数通方向HCIP-DataCom H12-831题库(单选题:301-310)

第301题 关于配置防火墙安全区域的安全级别的描述,错误的是 A、同一系统中,两个安全区域不允许配置相同的安全级别 B、只能为自定义的安全区域设定安全级别 C、安全级别一旦设定不允许更改 D、新建的安全区域,系统默认其安全级别为1 答案:D 解析: 新创建的安全区域缺省未…...

Vite 踩坑 —— require is not defined

动态require引入图片报错 require 是属于 Webpack 的方法&#xff0c;而我使用的是 Vite&#xff0c;所以我们需要去寻找 Vite 静态资源处理的方法 所以&#xff0c;我们只需要将代码改写以下形式即可。 ​ template <CarouselItem v-for"(item,index) of carous…...

彻底理解操作系统与内核的区别!

通用底盘技术 Canoo公司有一项核心技术专利&#xff0c;这就是它们的通用电动底盘技术&#xff0c;长得是这个样子&#xff0c;非常像一个滑板&#xff1a; 这个带轮子、有电池、能动的滑板已经包含了一辆车最核心的组件&#xff0c;差的就是一个外壳。这个看起来像滑板的东西…...

微信小程序4

一自定义组件应用 1.介绍 微信小程序自定义组件是指开发者可以自定义组件&#xff0c;将一些常用的 UI 元素封装成一个自定义组件&#xff0c;然后在多个页面中复用该组件&#xff0c;实现代码复用和页面性能优化的效果。 2.自定义组件分为两种类型 组件模板类型&#xff1a;…...

OpenCV14-图像平滑:线性滤波和非线性滤波

OpenCV14-图像平滑&#xff1a;线性滤波和非线性滤波 1.图像滤波2.线性滤波2.1均值滤波2.2方框滤波2.3高斯滤波2.4可分离滤波 3.非线性滤波3.1中值滤波3.2双边滤波 1.图像滤波 图像滤波是指去除图像中不重要的内容&#xff0c;而使关心的内容表现得更加清晰的方法&#xff0c;…...

kafka_2.10启动Kafka broker

要启动 Kafka broker&#xff0c;你需要执行以下步骤&#xff1a; 首先&#xff0c;确保你已经安装了 Kafka。你可以从 Apache Kafka 的官方网站下载 Kafka 的二进制发行版&#xff0c;并按照官方文档中的说明进行安装。 在安装完成后&#xff0c;进入 Kafka 的安装目录。 打…...

【配置环境】SQLite数据库安装和编译以及VS下C++访问SQLite数据库

一&#xff0c;环境 Windows 11 家庭中文版&#xff0c;64 位操作系统, 基于 x64 的处理器SQLite - 3.43.2Microsoft Visual Studio Community 2022 (64 位) - Current 版本 17.5.3 二&#xff0c;SQLite简介 简要介绍 SQLite&#xff08;Structured Query Language for Lite&a…...

Confluence 自定义展示页面

1. 概述 Confluence 作为知识库可通过JS脚本方式&#xff0c;根据登录用户或用户组进行前端页面的自定义 2. 实现方式 Confluence →管理→自定义HTML 嵌入对应JS脚本&#xff0c;示例如下 <script type"text/javascript">jQuery(#footer).html(<div>…...

使用C#的Socket从头实现的带有文件上传和下载功能的HTTP服务器

使用C#和Socket从头实现的带有文件上传和下载功能的HTTP服务器。它支持GET、POST请求方法&#xff0c;并能处理URL参数、请求体以及文件上传和下载。 using System; using System.IO; using System.Net; using System.Net.Sockets; using System.Text;class HttpServer {publi…...

【OSPF Loading、FULL状态与display ospf peer brief命令、OSPF的数据库讲解】

个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名大二在校生&#xff0c;喜欢编程&#x1f38b; &#x1f43b;‍❄️个人主页&#x1f947;&#xff1a;落. &#x1f43c;个人WeChat&#xff1a;hmmwx53 &#x1f54a;️系列专栏&#xff1a;&#x1f5bc;️ 零基…...

除氟树脂在工业、市政含氟废水处理中的应用

含氟废水的不达标排放对自然环境有很大的危害&#xff0c;氟化物离子可以累积在土壤和水体中&#xff0c;从而对生态系统造成破坏。大量的氟化物离子会对植物生长产生不良影响&#xff0c;并对水生生物造成毒性作用&#xff0c;严重时还可能导致生态灾难。氟化物离子如果没有得…...

模拟地和数字地的区别

模拟地和数字地的主要区别体现在设计目的、处理技术、数据类型和数据精度四个方面。 设计目的&#xff1a;模拟地的主要设计目的是分析时空数据、进行模型和预测&#xff0c;它主要关注动态变化和过程。而数字地的主要设计目的是数据的存储、管理、查询和分析&#xff0c;在地…...

Druid连接池最小连接数设置失效问题

问题发现&#xff1a; 配置 当项目启动后 线程池确实是初始化了5条连接&#xff0c;但是当项目运行一段时间后&#xff0c;5条连接确消失了&#xff0c;只会程序用到得时候&#xff0c;再去初始化连接&#xff0c;这样有点违背了参数设置得意义&#xff0c;后来通过查阅资料发…...

Javascript数据类型和类型转换

Javascript数据类型和类型转换 在JavaScript中&#xff0c;理解数据类型&#xff0c;如何区分它们&#xff0c;以及它们如何被转换是至关重要的。在这篇文章中&#xff0c;我们将探讨这些主题&#xff0c;以帮助巩固你的JavaScript基础。 基础数据类型和引用数据类型 当涉及…...

冲刺十五届蓝桥杯P0005单词分析

文章目录 题目分析代码 题目 单词分析 分析 统计字符串中字母出现的次数&#xff0c;可以采用哈希表&#xff0c;代码采用的是数组来存储字符&#xff0c;将字符-97&#xff0c;得到对应的数组下标&#xff0c;将对应下标的数组&#xff1b;找到数组元素最大的下标&#xff…...

php获取10年内的年份并加入下拉列表

要实现的效果 在html中内嵌php循环将数组中的年份加入下拉列表 <div class="form-group"><label>年份:</label><div class="input-group"><div class="input-group-prepend"><span class="input-group-te…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...