机器学习的打分方程汇总
机器学习的打分方程集合
受到机器学习(Machine Learning)和深度学习(Deep Learning)等算法模型的创新性冲击,其应用范围涵盖了自然语言处理(Natural Language Processing)、自动驾驶(Autopilot)、金融分析(Financial analysis)和生物医药研发(Biopharmaceutical R&D)等多个领域。其中,应用深度学习算法在预测小分子药物与疾病靶点蛋白之间的结合亲和力方面的设计和应用变得日益重要。分子对接(Molecular Docking)计算中打分方程(Scoring Function)算法通常用于对药物活性数据进行评估、分类、排名或预测,其结果对于决策制定候选药物分子而言至关重要。因此,本文将介绍一些基于机器学习和深度学习的打分方程。
1. 亲和力预测模型
| Model | Algorithm | Rp | RMSE | Reference |
|---|---|---|---|---|
| AGL-Score | GBT | 0.83 | 1.27 | [13] |
| ECIF | GBT | 0.87 | 1.17 | [14] |
| AEScore | MLP | 0.83 | 1.22 | [15] |
| OnionNet-2 | CNN | 0.86 | 1.16 | [16] |
| graphDelta | GNN | 0.87 | 1.05 | [17] |
| PointTransformer | CNN+ATT | 0.85 | 1.19 | [18] |
2. 机器学习打分方程
| Scoring Function | Algorithm | Description of protein–ligand complexes | Reference |
|---|---|---|---|
| RF-Score | RF | Protein−ligand atom-type pair counts | Ballester et al. (2010) |
| NN-Score 2.0 | ANN | Autodock Vina interaction terms, protein−ligand atom-type pair counts and electrostatic terms (BINANA) | Durrant and McCammon (2011) |
| ID-Score | SVM | Nine categories of descriptors related to protein–ligand interactions | Li et al. (2013) |
| SFCscore R F ^{RF} RF | RF | SFCscore interaction terms | Zilian and Sotriffer (2013) |
| ΔVinaRF 20 _{20} 20 | RF | Autodock Vina interaction terms and additional molecular descriptors | Wang and Zhang (2017) |
| RI-Score | RF | Rigidity index descriptors | Nguyen et al. (2017) |
| TNet-BP | CNN | Algebraic topology | Cang and Wei (2017) |
| K D E E P _{DEEP} DEEP | CNN | Molecular descriptors embedded into a 3D grid | Jiménez et al. (2018) |
| TopBP-ML | GBT | Algebraic topology | Cang et al. (2018) |
| TopBP-DL | CNN | Algebraic topology | Cang et al. (2018) |
| Pafnucy | CNN | Molecular descriptors embedded into a 3D grid | Stepniewska-Dziubinska et al. (2018) |
| PLEC-nn | DNN | Hashed fingerprint constructed by pairing ligand and protein atoms according to its environment | Wójcikowski et al. (2019) |
| EIC-Score | GBT | Differential geometry representations | Nguyen and Wei (2019b) |
| AGL-Score | GBT | Statistical features of the adjacency and Laplacian matrices of multiscale weighted labeled algebraic subgraphs | Nguyen and Wei (2019a) |
| OnionNet | CNN | Rotation-free element pair-specific contacts between ligands and protein atoms, grouped into different distance ranges | Zheng et al. (2019) |
| ΔVinaXGB | XGBT | Autodock Vina score and molecular descriptors, including water molecules | Lu et al. (2019) |
| NNScore::LD | FFNN | NNScore 2.0 features and RDKit ligand descriptors | Boyles et al. (2020) |
| RosENet | CNN | Molecular mechanics energies from Rosetta force field and molecular descriptors embedded onto a 3D grid | Hassan-Harrirou et al. (2020) |
| ECIF-GBT | GBT | Protein−ligand atom-type pair counts considering each atoms connectivity | Norberto et al. (2021) |
| ECIF::LD-GBT | GBT | Protein−ligand atom-type pair counts considering each atoms connectivity and RDKit ligand descriptors | Norberto et al. (2021) |
相关文章:
机器学习的打分方程汇总
机器学习的打分方程集合 受到机器学习(Machine Learning)和深度学习(Deep Learning)等算法模型的创新性冲击,其应用范围涵盖了自然语言处理(Natural Language Processing)、自动驾驶(…...
一文了解数据管理框架以及数据战略制定方法
这一节主要介绍数据管理这一章的另一重要部分,也就是我们在数据管理经常使用到的数据管理框架以及数据战略制定方法。 要制定数据管理框架,或者是组织需要制定数据治理规划或数据管理规划,需要首先制定与业务战略对齐的数据战略。 01、数据…...
智能管家“贾维斯”走进现实?AI Agent或成2023科技领域新风向标
漫威粉们想必都知道《钢铁侠》系列电影中,有一个不可或缺的角色——贾维斯。但就算是没有看过任何一部大电影的路人,只要通过一个词就可以了解“贾维斯”是一个什么样的角色——智能管家。 作为托尼斯塔克的助手,贾维斯的存在让主人的生活更…...
【广州华锐互动】VR高层小区安全疏散演练系统
在今天的高科技时代,虚拟现实(VR)技术已经被广泛应用到各个领域,包括教育和培训。由广州华锐互动定制开发的VR高层小区安全疏散演练系统,开始在房地产行业中崭露头角。这种系统通过模拟真实的紧急情况,帮助…...
用Python做一个文件夹整理工具
文章目录 简介文件夹对话框文件映射组件完整组件 简介 我们的目的是做一个像下面这样的工具,前面两个输入框,用于输入源路径和目标路径,下面的图片、视频、音乐表示在目标路径中创建的文件夹,后面的文件后缀,表示将这…...
Tortoise SVN 察看本地缓存密码
1、打开设置(Settings) 2、查看保存的数据 3、打开鉴权数据 4、查看密码 CTRLSHIFT双击表格,就会出现一列密码列 (我的是Mac PD虚拟Win11,CTRLSHIFTOPTION双击表格) 原文见这里: Recover SVN …...
MSP430F5529晶振配置
MSP430(F5529)相比MSP430(F149)来讲,功能更加强大。 UCS简介 MSP430F5XX/MSP430F6XX系列器件的UCS包含有五种时钟源,依次是:XT1CLK、VLOCLK、REFOCLK、DCOCLK和XT2CLK。这五种时钟的详细介绍请参考该系列芯片的指导手册,其中XT1C…...
[架构之路-237]:目标系统 - 纵向分层 - 网络通信 - DNS的递归查询和迭代查询
目录 一、DNS协议与DNS系统架构 1.1 什么是DNS协议 1.2 为什么需要DNS协议 1.3 DNS系统架构 二、DNS系统的查询方式 2.1 递归与迭代的比较 2.2 DNS递归查询 2.3 DNS迭代查询 一、DNS协议与DNS系统架构 1.1 什么是DNS协议 DNS(Domain Name Systemÿ…...
vue2 集成 Onlyoffice
缘起于进行了一次在线 Office 解决方案的调研,对比了 Office365、可道云、WPS Office、PageOffice 等厂商,最终敲定了使用 Onlyoffice,故整理了一份 Onlyoffice 从零开始系列教程,这是第一篇。 一、Onlyoffice 是什么?…...
天锐绿盾透明加密、半透明加密、智能加密这三种不同加密模式的区别和适用场景——@德人合科技-公司内部核心文件数据、资料防止外泄系统
由于企事业单位海量的内部数据存储情况复杂,且不同公司、不同部门对于文件加密的需求各不相同,单一的加密系统无法满足多样化的加密需求。天锐绿盾企业加密系统提供多种不同的加密模式,包括透明加密、半透明加密和智能加密,用户可…...
六、DHCP实验
拓扑图: DHCP协议,给定一个ip范围使其自动给终端分配IP,提高了IP分配的效率 首先对PC设备选择DHCP分配ip 首先先对路由器的下端配置网关的ip 创建地址池,通过globle的方式实现DHCP ip pool 地址池名称 之后设置地址池的网关地址…...
N沟道场效应管 FDA69N25深度图解 工作原理应用
深力科推荐一款 FDA69N25是高压 MOSFET产品,基于平面条形和 DMOS 技术。 该 MOSFET 产品专用于降低通态电阻,并提供更好的开关性能和更高的雪崩能量强度。 该器件系列适用于开关电源转换器应用,如功率因数校正(PFC)、…...
Python爬虫入门教程
文章目录: 一:Python基础 二:爬虫须知 1.流程 2.遵守规则 三:HTTP请求和响应 1.相关定义 2.HTTP请求响应 2.1 完整的HTTP请求 2.2 完整的HTTP响应 3.Requests库 四:HTML 1.HTML网页结构 2.常用标 参考&…...
使用正则前瞻检查密码强度
使用正则前瞻检查密码强度 题目要求 要求密码必须包含大小写字母,并且至少包含 $,_. 中的一个特殊字符。 在这道题中,我们可以使用正则表达式的前瞻运算来实现。 const reg /^(?.*\d)(?.*[a-z])(?.*[A-Z])(?.*[$,_.])[\da-zA-Z$,_.]{6,12}/;con…...
react+ts手写cron表达式转换组件
前言 最近在写的一个分布式调度系统,后端同学需要让我传入cron表达式,给调度接口传参。我去了学习了解了cron表达式的用法,发现有3个通用的表达式刚好符合我们的需求: 需求 每天 xx 的时间: 0 11 20 * * ? 上面是…...
民安智库(第三方市民健康素养调研)居民健康素养调查的重要性及实施步骤
一、背景和意义 健康素养是衡量一个社区或国家居民对健康知识的理解,以及他们如何将这些知识应用于日常生活中的能力的重要指标。它不仅包括了基本的医学知识,如疾病预防和治疗,也包括了生活方式的改善,如合理饮食和适当运动。因…...
Linux | vim的入门手册
目录 前言 一、什么是vim 二、vim编辑器的模式 1、插入模式 (1)用vim打开文件 (2)进入插入模式 2、默认模式 (1)光标移动 (2)复制、粘贴与剪切操作 (3&#x…...
B053 项目部署
目录 Linux简介虚拟机软件安装安装centos步骤备份系统网络设置 远程访问Linux步骤永久关闭CentOS防火墙 linux命令linux文件系统linux常用命令目录相关命令文件相关命令 安装JDK先卸载自带的JDK安装JDK复制压缩包到linux解压配置环境变量 安装MySql清理旧文件安装mysqlMysql编码…...
视觉Slam面试题(不定时更新)
文章目录 0 引言1 单目、双目、深度相机和RGBD相机的区别2 特征点法与直接法的优缺点3 等距变换、相似变换、仿射变换、射影变换的区别4 单应矩阵、本质矩阵和基础矩阵的区别5 Slam中为什么用李群李代数6 解释Slam中的绑架问题7 ORB、SIFT和SURF特征点检测算法的区别8 什么是对…...
从入门到进阶 之 ElasticSearch 节点配置 集群篇
🌹 以上分享 ElasticSearch 安装部署,如有问题请指教写。🌹🌹 如你对技术也感兴趣,欢迎交流。🌹🌹🌹 如有需要,请👍点赞💖收藏🐱&a…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
Linux中《基础IO》详细介绍
目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改,实现简单cat命令 输出信息到显示器,你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...
阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...
[拓扑优化] 1.概述
常见的拓扑优化方法有:均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有:有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...
