四边形不等式
区间dp问题,状态转移方程:
dp[i][j] = min( dp[i][k] + dp[k+1][j] +w[i][j] ) //w[i][j]是从i到j的,一个定值 不随k改变,而且w的值只和i j有关,是它们的二元函数。
其中i<=k<=j ,初始值dp[i][i]已知。
含义:
dp[i][j]是状态i到j的最小花费。
dp[i][k] + dp[k+1][j]体现递推关系,k在i和j之间滑动,k有一个最优值使dp最小。
w[i][j]的性质很重要!w[i][j]是和题目有关的费用,如果满足四边形不等式和单调性,那么用DP计算dp时,就可以用四边形不等式进行优化。
看w函数,
单调性:【如果大区间包含小区间,那么大区间的w值也大于】
四边形不等式:
i,i',j,j' w[i,j]+w[i',j']<=w[i,j']+w[i',j] 交叉区间的和<=大区间和小区间的和
如果w满足单调性和四边形不等式的话,dp也满足。
dp[i][j]的最优分割点记为s[i][j],那么 s[i][j-1] <= s[i][j] <=s[i+1][j]
打表观察是否满足:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
#include<map>
#include<cmath>
#include<queue>
using namespace std;
int w(int i,int j)
{//具体问题具体分析
}
int main()
{bool flag=true;//验证单调性 for(int l=1;l<=n;l++)for(int r=l+2;r<=n;r++)for(int i=l;i<=r;i++)for(int j=i;j<=r;j++)if(w(i,j)>w(l,r)) flag=false;//验证四边形不等式 for(int l=1;l<=n;l++)for(int r=l+2;r<=n;r++)if(w(l,r-1)+w(l+1,r)>w(l,r)+w(l+1,r-1)) flag=false;if(flag) //符合单调性以及四边形不等式else //不符合单调性以及四边形不等式return 0;
}
相关文章:

四边形不等式
区间dp问题,状态转移方程: dp[i][j] min( dp[i][k] dp[k1][j] w[i][j] ) //w[i][j]是从i到j的,一个定值 不随k改变,而且w的值只和i j有关,是它们的二元函数。 其中i<k<j ,初始值dp[i][i]已知。 含义&#x…...

Jmeter(四):请求默认值元件应用,正则表达式提取器元件讲解
Jmeter请求默认值元件应用 HTTP请求默认值 在公司内部进行测试的时候,一般测试环境访问的接口地址(服务器名称 或IP)、端口、协议一般都是不变的,但http请求取样器每个请求都要求写一遍 这些信息,在实际HTTP请求取样…...
LCR 001. 两数相除
剑指Offer通关 力扣搜索LCR即为剑指Offer的所有题目。 LCR 001. 两数相除 快速乘 解析: 题目规定只能用32位整数,所以取值范围在-2^31 ~ 2^31 - 1 之间。这里的特殊情况为什么不考虑被除数和除数为最大值?因为后面会将所有的数都转为负数…...

LeCun和Bengio“吵”起来了,人工智能是“潘多拉魔盒”吗?
作者 | 谢年年 上周末,深度学习领域最有影响力的三巨头之二Yann LeCun和Yoshua Bengio就AI的潜在风险和安全问题引发了一场激烈辩论,人工智能是“潘多拉魔盒”吗?这场辩论引来众多AI知名人士围观。 LeCun在Facebook上发起了这场辩论ÿ…...

电子期刊制作宝典,让你成为专业行家
电子期刊作为一种新兴的媒体形式,越来越受到人们的喜爱。它不仅方便快捷,而且可以随时随地阅读,不受时间和空间的限制。那么,如何制作一份高质量的电子期刊呢? 1.首先打开FLBOOK电子杂志平台 2.然后点击模板选择电子期…...
ESP32网络开发实例-Web显示传感器实时数据
Web显示传感器实时数据 文章目录 Web显示传感器实时数据1、软件准备2、硬件准备3、代码实现3.1 Web页面代码实现4.2 Web服务器代码实现本文将详细介绍如何使用ESP32在 Web 服务器上绘制传感器读数(温度、湿度和压力)。 ESP32 将托管一个网页,其中包含三个实时图表,每 30 秒…...

ARM Cortex-A9:裸机开发,点亮LED3
1.看原理图 外设板原理图 核心板原理图 2.在芯片手册中找到控制硬件的有效的特殊功能寄存器 选择0x1输出 GPX1DAT[0]->GPX1_0 0->1/0 3.编程 start.s Makefile复制到桌面 使用超级终端,连接串口 随便写一个 选择串口 配置串口 板子上电马上按enter…...

QT学习day2
一、思维导图 作业: 使用手动连接,将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中,在自定义的槽函数中调用关闭函数将登录按钮使用qt5版本的连接到自定义的槽函数中,在槽函数中判断ui界面上输入的账号是否为"admi…...
214. Devu和鲜花
214. Devu和鲜花 - AcWing题库 如果每个盒子里的花的数量是无限的,用隔板法可以得出答案是 现在每个盒子中区的花数要满足n个条件 我们可以求答案的补集,用全部方案数减去补集方案数 每一个不符合条件的要求为,设为Bi 补集方案数为就成了…...

【C++初阶(三)引用与内联函数】
本专栏内容为:C学习专栏,分为初阶和进阶两部分。 通过本专栏的深入学习,你可以了解并掌握C。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:C 🚚代码仓库:小小unicorn的代码仓库&…...

RK3288 Android11 mini-pcie接口 4G模组EC200A适配(含自适应功能)
这里写目录标题 1、修改驱动内核配置①使能USBNET功能②使能 USB 串口 GSM、CDMA 驱动③使能 USB 的 CDC ACM模式④使能PPP功能 2、使用lsusb命令查看是否识别到usb接口的“EC200A”4G模组3、在drivers/usb/serial/option.c添加VID和PID信息①添加VID和PID定义②在option_ids 数…...
Windows安装Jenkins
JDK 11 以上 https://github.com/adoptium/temurin11-binaries/releases/download/jdk-11.0.20%2B8/OpenJDK11U-jdk_x64_windows_hotspot_11.0.20_8.msi https://www.jenkins.io/download/ 下载windows安装版本 授权用户administrator logon as services windows(server)安装…...
计算属性,侦听属性,方法区别及例子
计算属性、监听属性和方法都是Vue中的重要概念,但它们在功能和使用上有所不同: 计算属性:计算属性是基于依赖进行缓存的属性,可以根据其他数据动态计算得出。计算属性会根据依赖自动更新,但是只有在其所依赖的数据发生…...

Windows工业三防平板全功能NFC近距离感应一维/二维扫描
Windows系统工业三防平板电脑是一种在智慧工厂仓储物流、MES数采、车载设备、设备检测、自动化控制等领域广泛应用的先进设备。此外,它还在公共服务领域,如高速交通、物流运输、电力检测、公务执法、银行金融、船舶装备、户外勘测、建筑工程、汽车检测、…...
git远端协同开发、解决冲突、分支合并、gitlab使用、远程仓库回滚、为开源项目贡献代码、git工作流,git pull和git fetch,变基
协同开发 避免冲突 张三:改了 settings.py 第一行,提交了 李四:改了 settings.py 第二行,提交了 你也在改setting.py ,没有拉取代码,不知道他们提交了,动了第二行,但是跟李四代码不一样 你要…...

ims-go项目搭建
通过集成开发工具Goland创建项目 整合Gin框架,在终端中输入如下命令: go get -u github.com/gin-gonic/gin 整合Gorm,安装命令如下: go get -u gorm.io/gorm 安装sqlserver驱动,安装命令如下: go get -u…...

2022最新版-李宏毅机器学习深度学习课程-P26 Recurrent Neural Network
RNN 应用场景:填满信息 把每个单词表示成一个向量的方法:独热向量 还有其他方法,比如:Word hashing 单词哈希 输入:单词输出:该单词属于哪一类的概率分布 由于输入是文字序列,这就产生了一个问…...

【Qt控件之QButtonGroup】概述及使用
概述 QButtonGroup 类提供了一个容器来组织一组按钮部件。 QButtonGroup 提供了一个抽象容器,可以将按钮部件放置其中。它不提供此容器的可视表示(请参见 QGroupBox,用于容器部件),而是管理组中每个按钮的状态。 一个…...

【开源分享】基于Html开发的房贷计算器,模仿新浪财经
房贷计算器是一种房贷计算的在线计算Web应用,按用户选择的贷款类型、贷款金额、期限、利率可计算得出每月月供参考、支付利息、还款总额这些信息。本文模仿新浪财经开发的房贷计算器。 作品预览 https://fangdai.gitapp.cn 源码地址 https://github.com/geeeeeee…...
ftp文件上传缓慢问题
问题描述 某环境下,通过vsftp上传文件缓慢。 问题分析 这个问题是由于服务器DNS导致,如果在内网机器中,配置了公网的DNS或者其他不能链接的DNS,会导致上传缓慢。 解决方案 目前有两种解决方式,任选其一即可&#…...

springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...