2022年亚太杯APMCM数学建模大赛D题储能系统中传热翅片的结构优化求解全过程文档及程序
2022年亚太杯APMCM数学建模大赛
D题 储能系统中传热翅片的结构优化
原题再现
高效储能技术是解决可再生能源和余热资源波动性和间歇性的核心技术。相变蓄热以其较高的储能密度和近恒温蓄热放热而得到广泛应用。固-液相变材料具有相变前后相变潜热高、体积变化小等特点,易于储存和封装。然而,由于其导热系数普遍较低,导致蓄热和放热过程较长,成为制约其广泛应用的关键因素。为了提高蓄热系统的快速传热能力,需要对系统的结构设计和参数进行优化研究。目前,添加翅片作为一种简单、经济、有效的强化固液相变换热过程的手段得到了广泛的应用。
某公司需要对相变蓄热系统中水箱内的传热翅片结构进行设计,以进一步提高蓄热产品的传热性能。蓄热系统的核心部件是管壳式蓄热罐,如图1所示。横截面如图2所示。圆环需要填充蓄热式PCM和翅片结构。当相变材料吸热时,高温工质在内管内循环,储存和利用其余热。当相变材料释放热量时,低温工作流体在内管中循环,吸收和再利用相变材料中储存的热量。
公司拟开发小型相变蓄热罐,罐内径0.02 m,罐外径0.05 m,翅片导热系数214 W/(m K),相变材料密度780 kg/m3,相变材料导热系数0.15 W/(m K),相变温度333 K,管外绝热,并且内部充满温度为373 K的工作流体。现在需要您的团队回答以下问题,以提高蓄热系统的传热速率。
问题1:假设采用图3所示的矩形翅片均匀分布蓄热水箱的横截面。矩形翅片的长度为0.018 m,宽度为0.006 m,翅片之间的间隔角为θ。固态PCM通过吸收管中工作流体的热能来加热。请模拟蓄热罐中的传热过程,优化间隔角θ,并说明在此情况下,PCS平均温度从室温(293 K)上升到相变温度所需的时间。
问题2:翅片的形状和几何尺寸对蓄热器的传热速率有很大影响。以图4为例,对三角形翅片的尺寸和分布进行优化,研究其尺寸对相变材料升温速率的影响,并与问题1中矩形翅片结构的传热效果进行对比分析。
问题3:进一步优化翅片形状、参数和空间分布的设计,以实现相变材料的最佳传热能力。
问题4:请写信给公司,建议蓄热水箱的翅片设计。
整体求解过程概述(摘要)
公式部分由于md5码上传耗时,因此以特殊字符代替
在蓄热器中引入翅片是克服相变材料导热系数低,提高蓄热效率的有效途径传输效率。采用拓扑优化和分形优化相结合的方法,对翅片的结构和分布进行了优化。
针对问题1,建立了计算流体力学(CFD)的二维有限元模型(FEM)来研究换热过程。用焓-孔隙率法描述相变材料的相变。相变开始于矩形翅片周围,随后延伸至油箱外壁,导致PCM从固相变为液相。考虑到相变材料温度从293K上升到333K,初始相变时间(�1)在� 72°、60°、45°、36°、30°和24°的相变时间分别为47.6min、39.2min、31.4min、25.2min、20.7min、17.2min(�2)分别为158.5min、142.9min、123.4min、106.2min、92.4min、81.9min。这个�1、采用液相分数(fm)和强化比(ER)作为热行为评价指标。最优� 最小为24°�17.2min和最大值中的1个�� 12.3%。
对于问题2�, 翅片长度(�), 和宽度(�) 系统地研究了三角形翅片的性能。结果表明:� =与对照组相比,24°提高了63.83%、56.34%、46.73%、46.73%和31.71%的升温速率�=72°、60°、45°、36°、30°。� =0.024m比0.024m分别提高42.17%、70.04%和79.52%� =0.006m、0.012m和0.018m。� =0.01m升温速率比对照分别提高7.60%、22.55%、35.91%�=0.008m、0.006m、0.004m。fin参数的优先级顺序为� > � > �. 矩形翅片的加热效率�=72°、45°、30°和24°比三角形风机分别提高11.95%、14.99%、15.43%和15.62%。
针对问题3,提出了两种优化模型:拓扑优化模型和分形优化模型。对于拓扑优化,采用变密度法进行图像重建,获得最高平均温度。对于分形优化,最佳父子对象根据Murray定律和生长率生成分形树。结果表明,与矩形翅片和三角形翅片相比,拓扑优化分别提高了18.84%和28.17%,分形优化分别提高了14.01%和24.25%。
对于问题4,向fin公司写了一封推荐信,提出了优化设计的建议。
模型假设:
1) PCM的物理性质是均匀的、各向同性的、与温度无关的(液态密度除外)。
2) 相变材料的相变过程被认为是层流的、不稳定的、不可压缩的。
3) 液体相变材料的自然对流符合Boussinesq假设。
4) 假定液体分数随温度线性变化。
5) 模拟过程中忽略了粘性耗散的影响。
6) 忽略对环境的热损失。
问题重述:
问题背景
双壁相变储能罐是一种常用的储能材料。热传输液体流入油箱并将能量损失给PCM。PCM通过从固体到液体的相变吸收热量,并从液体到固体释放热量。翅片嵌入油箱壁之间的PCM中,以加速传热过程。使用翅片可缩短熔化时间,显著提高储能率。为了促进传热过程,需要优化翅片分布。
问题重述
问题1:给出了矩形翅片均匀分布的横截面。提出了模拟储罐内传热过程的模型。研究影响计算了相变材料在293K~333K温度范围内的传热时间。
问题2:基于三角形翅片的新截面,研究翅片尺寸对传热的影响。将结果与矩形翅片。
问题3:提出一个数学模型,以获得最佳的鳍分布。
问题4:写一封推荐信给当时的fin公司,以获得最佳的fin设计。
模型的建立与求解整体论文缩略图
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可
程序代码:
部分程序如下:
import numpy
# sigmoid function:scipy.special.expit
import scipy.special
import matplotlib.pyplot
# %matplotlib inlineclass neuralNetwork:# initialise the neural networkdef __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):# set nodes and learningrateself.inodes = inputnodesself.hnodes = hiddennodesself.onodes = outputnodesself.lr = learningrate# set weight,include weight_input_hidden,weight_hidden_output (random)self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes))# sigmoid functionself.activation_function = lambda x: scipy.special.expit(x)passdef train(self, inputs_list, targets_list):# convert inputs list to 2d arrayinputs = numpy.array(inputs_list, ndmin=2).Ttargets = numpy.array(targets_list, ndmin=2).T# calculate signals into hidden layerhidden_inputs = numpy.dot(self.wih, inputs)hidden_outputs = self.activation_function(hidden_inputs)# calculate signals into output layerfinal_inputs = numpy.dot(self.who, hidden_outputs)final_outputs = self.activation_function(final_inputs)output_errors = targets - final_outputs# hidden_errors = who.T * output_errorshidden_errors = numpy.dot(self.who.T, output_errors)# update the weights for the links between the hidden and output layersself.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)),numpy.transpose(hidden_outputs))# updata the weights for the links between the input and hidden layersself.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)),numpy.transpose(inputs))passdef query(self, inputs_list):inputs = numpy.array(inputs_list, ndmin=2).Thidden_inputs = numpy.dot(self.wih, inputs)hidden_outputs = self.activation_function(hidden_inputs)final_inputs = numpy.dot(self.who, hidden_outputs)final_outputs = self.activation_function(final_inputs)return final_outputs
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可
相关文章:

2022年亚太杯APMCM数学建模大赛D题储能系统中传热翅片的结构优化求解全过程文档及程序
2022年亚太杯APMCM数学建模大赛 D题 储能系统中传热翅片的结构优化 原题再现 高效储能技术是解决可再生能源和余热资源波动性和间歇性的核心技术。相变蓄热以其较高的储能密度和近恒温蓄热放热而得到广泛应用。固-液相变材料具有相变前后相变潜热高、体积变化小等特点&#x…...

图像处理软件Photoshop 2023 mac新增功能 ps 2023中文版
Photoshop 2023 mac是一款功能强大、易用且灵活的图像编辑软件,旨在满足专业设计师和摄影师的需求。无论您是处理照片、制作图形还是进行艺术创作,Photoshop 2023 都能为您提供丰富的工具和效果,帮助您实现创意想法。Photoshop还支持多种文…...
CSS基本讲解与使用(详解)
什么是CSS: CSS(Cascading Style Sheets,层叠样式表)是一种用于定义网页元素外观和样式的标记语言。它是一种用于将结构化文档(通常是HTML和XML)的外观和排版从内容的标记中分离出来的技术。CSS的主要目标是将网页的呈…...

最新AI创作系统ChatGPT源码+搭建部署教程+支持GPT4.0+支持ai绘画(Midjourney)/支持Prompt
一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统AI绘画系统,支持OpenAI GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署…...

Linux系统之部署SSCMS内容管理系统并实现外网访问
Linux系统之部署SSCMS内容管理系统并实现外网访问 一、SSCMS介绍二、cpolar介绍2.1 cpolar简介2.2 cpolar使用场景 三、本地环境介绍3.1 本地环境规划3.2 本次实践介绍 四、本地环境检查3.1 检查Docker服务状态3.2 检查Docker版本3.3 检查docker compose 版本 五、部署SSCMS服务…...

JVS-rules中的基础与复合变量:规则引擎的心脏
JVS-rules中的“变量”概念与编程语言中的变量类似,但它们通常在规则系统中处理条件判断、业务结果复制场景,如下所示: 条件判断:在规则引擎中,规则通常由两个部分组成:条件和分支。变量用于描述条件部分中…...

RN:指定模拟器启动
背景 我们启动 react native 项目的时候,会打开一个模拟器,但是有时不是我们想要的,我们如何去指定一个模拟器启动呢? IOS xcrun simctl list devicesyarn ios --simulator"<模拟器的UDID>"Android 目前没发现…...

【ARM Cache 系列文章 10 -- ARM Cortex-A720 Hunter 介绍】
文章目录 概述1.1 A720 Features1.1.1 core features1.1.2 Cache features1.1.3 Debug features 1.2 A720 组件介绍1.2.1 L1 缓存系统1.2.2 指令解码1.2.3 寄存器重命名1.2.4 指令分发单元1.2.5 向量执行单元1.2.6 加解密扩展单元1.2.6.1 有限域算法 1.3 接口1.4 GIC CPU Inter…...

深度学习——残差网络(ResNet)
深度学习——残差网络(ResNet) 文章目录 前言一、函数类二、残差块三、ResNet模型四、模型训练五、小结总结 前言 随着设计越来越深的网络,深刻理解“新添加的层如何提升神经网络的性能”变得至关重要。更重要的是设计网络的能力,…...

[java进阶]——IO流,递归实现多级文件拷贝
🌈键盘敲烂,年薪30万🌈 目录 一、认识IO流 二、了解编码与解码 二、IO流体系 三、字节输入输出流 四、字符输入输出流 五、多级文件拷贝 一、认识IO流 IO流也叫输入流(intput)、输出流(onput),该流就像java程序同硬盘之间的…...

Linux创建与删除用户
Linux创建与删除用户 新增用户: adduser 用户名【添加用户】 passwd 用户名【设置用户密码】删除用户: userdel -r 用户名【删除用户】...

对传感器采样数据的低通滤波
低通滤波(Low-pass filter) 是一种过滤方式,规则为低频信号能正常通过,而超过设定临界值的高频信号则被阻隔、减弱。 一阶低通数字滤波器 滤波系数a越小,滤波结果越平稳,但是灵敏度低;滤波系数a越大,滤波结…...

Java开发树结构数据封装!
目录 源数据如下controller接口:service层封装:Dao接口:Dao层Mapper:映射实体类: 源数据如下 controller接口: RequestMapping("/UserTreeInfo")public RespBody getUserTreeInfo(Long userId) {List<MenuTreeVo>…...

c++学习笔记汇总
[TOC] (C学习笔记汇总) 基础认识、基础语法 类、类与类之间的关系、可调用对象、std::function类模板、c11新标准、资源管理方案RAII、指针、智能指针、引用计数、C的多态 ios、istream、iostream、fstream、sstream 模板编程: 模板编程:主要分为“泛…...

[动手学深度学习]生成对抗网络GAN学习笔记
论文原文:Generative Adversarial Nets (neurips.cc) 李沐GAN论文逐段精读:GAN论文逐段精读【论文精读】_哔哩哔哩_bilibili 论文代码:http://www.github.com/goodfeli/adversarial Ian, J. et al. (2014) Generative adversarial network…...

Kotlin中的算数运算符
在Kotlin中,我们可以使用各种算术运算符来进行数值计算和操作。下面对这些运算符进行详细描述,并提供示例代码。 正号(正数)和负号(负数): 正号用于表示一个正数,不对数值进行任何…...

Linux高性能服务器编程 学习笔记 第十六章 服务器调制、调试和测试
Linux平台的一个优秀特性是内核微调,即我们可以通过修改文件的方式来调整内核参数。 服务器开发过程中,可能会碰到意想不到的错误,一种调试方法是用tcpdump抓包,但这种方法主要用于分析程序的输入和输出,对于服务器的…...
第三期:云函数入门指南答案
1.云函数需要用户自行考虑租用/购买多少资源以达到最少成本最高效运行自己的函数。 答案:错误(False) 2.Cloud Functions可以为您准备好计算资源,弹性地、可地运行任务,并提供日志查询、性能监控和报警等功能。 答案:正确(True…...

企业怎么通过数字化工具来实现数字化转型?
数字化转型是使用数字技术和工具从根本上改变公司运营方式并向客户提供价值的过程。它涉及思维方式、流程和技术的全面转变,以跟上快节奏的数字时代。以下是有关公司如何通过数字工具实现数字化转型的分步指南: 1.定义您的愿景和目标: 首先确…...

React函数式写法和类式写法的区别(以一个计数器功能为例子)
函数式写法更加简洁和函数式编程思维导向,适用于无状态、UI纯粹的组件,且可以使用Hooks处理副作用。而类式写法适用于有内部状态、生命周期方法和复杂交互逻辑的组件,提供了更多的灵活性和控制力。 文章目录 一、计数器功能演示 1.函数式写法…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...

10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...