webrtc gcc算法(1)
老的webrtc gcc算法,大概流程:
这两个拥塞控制算法分别是在发送端和接收端实现的, 接收端的拥塞控制算法所计算出的估计带宽, 会通过RTCP的remb反馈到发送端, 发送端综合两个控制算法的结果得到一个最终的发送码率,并以此码率发送数据包。
Loss-Based Controller在发送端负责基于丢包的拥塞控制,它的输入比较简单, 只需要根据从接收端反馈的丢包率, 就可以做带宽估算; 上图右侧比较复杂, 做的是基于延迟的带宽估计, 这也是本文后面主要介绍的部分。在最近的WebRTC实现中, GCC把它的两种拥塞控制算法都移到了发送端来实现, 但是两种算法本身并没有改变,只是在发送端需要计算延迟, 因而需要一些额外的feedback信息, 为此WebRTC扩展了RTCP协议, 其中最主要的是增加了Transport-CC Feedback,该包携带了接收端接收到的每个媒体包的到达时间。
基于延迟的拥塞控制比较复杂, WebRTC使用延迟梯度来判断网络的拥塞程度,延迟梯段的概念后文会详细介绍;其算法分为几个部分:
- 到达时间滤波器
- 过载检测器
- 速率控制器
在获得两个拥塞控制算法分别结算到的发送码率之后, GCC最终的发送码率取的是两种算法的最小值。下面我们详细介绍WebRTC的拥塞控制算法GCC。
一、基于丢包的带宽估计
基于丢包的拥塞控制比较简单, 其基本思想是根据丢包的多少来判断网络的拥塞程度, 丢包越多则认为网络越拥塞, 那么我们就要降低发送速率来缓解网络拥塞;如果没有丢包,这说明网络状况很好, 这时候就可以提高发送码率, 向上探测是否有更多的带宽可用。实现该算法有两点:一是获得接收端的丢包率, 一是确定降低码率和提升码率的阈值。
WebRTC通过RTCP协议的Receive Report反馈包来获取接收端的丢包率。Receive Report包中有一个fraction lost 字段, 包含了接收端的丢包率,如下图所示。
发送端接收RR报文,并根据丢包率调整估计带宽As
- 如果丢包率 < 2%,估计带宽在以前的基础上增长5%;
- 如果丢包率在[2%, 10%]之间,估计带宽保持不变;
- 如果丢包率 > 10%,估计带宽在以前的基础上降低(丢包率 * 50%)
而这部分的丢包则需要通过其他的如NACK或FEC等手段来恢复。
二、基于延迟梯度的带宽估计
WebRTC实现的基于延迟梯度的带宽估计有两种版本:
- 最早一种是在接受端实现,评估的带宽结果通过RTCP REMB消息反馈到发送端。 在此种实现中, 为了准确计算延迟梯度,WebRTC添加了一种RTP扩展头部abs-send-time, 用来表示每个RTP包的精确发送时间, 从而避免发送端延迟给网络传播延迟的估计带来误差。这种模式也是RFC和google的paper中描述的模式。
- 在新近的WebRTC的实现中,所有的带宽估计都放在了发送端, 也就说发送端除了做基于丢包的带宽估计, 同时也做基于延迟梯度的带宽估计。 为了能够在接受端做基于延迟梯度的带宽估计, WebRTC扩展了RTP/RTCP协议, 其一是增加了RTP扩展头部, 添加了一个session级别的sequence number, 目的是基于一个session做反馈信息的统计, 而不紧紧是一条音频流或视频流; 其二是增加了一个RTCP反馈信息transport-cc-feedback, 该消息负责反馈接受端收到的所有媒体包的到达时间。接收端根据包间的接受延迟和发送间隔可以计算出延迟梯度,从而估计带宽。
关于如何根据延迟梯度推断当前网络状况, 后面会分几点详细展开讲, 总体来说分为以下几个步骤:
- 到达时间滤波器
- 过载检测器
- 速率控制器
其过程就是, 到达时间滤波器根据包间的到达时延和发送间隔,计算出延迟变化, 这里会用到卡尔曼滤波对延迟变化做平滑以消除网络噪音带来的误差;延迟变化会作为过载检测器的输入,由过载检测器判断当前网络的状态,有三种网络状态返回overuse/underuse/normal,检测的依据是比较延迟变化和一个阈值, 其中该阈值非常关键且是动态调整的。最后根据网络状态的变化, 速率控制器根据一个带宽估计公式计算带宽估计值。
相关文章:

webrtc gcc算法(1)
老的webrtc gcc算法,大概流程: 这两个拥塞控制算法分别是在发送端和接收端实现的, 接收端的拥塞控制算法所计算出的估计带宽, 会通过RTCP的remb反馈到发送端, 发送端综合两个控制算法的结果得到一个最终的发送码率,并以…...

2022年亚太杯APMCM数学建模大赛C题全球变暖与否全过程文档及程序
2022年亚太杯APMCM数学建模大赛 C题 全球变暖与否 原题再现: 加拿大的49.6C创造了地球北纬50以上地区的气温新纪录,一周内数百人死于高温;美国加利福尼亚州死亡谷是54.4C,这是有史以来地球上记录的最高温度;科威特53…...

苹果开发者 Xcode发布TestFlight全流程
打包前注意事项 使用Xcode导出安装包之前,必须先确认账户的所有合约是否全部同意,如果有不同意的,在出包的时候会弹出报错 这是什么意思 这意味着您有一些需要在应用商店连接上验证的协议(protocol)/契约(Contract)。解决方案 连接到应用商店…...

Spring Security—Servlet 应用架构
目录 一、Filter(过滤器)回顾 二、DelegatingFilterProxy 三、FilterChainProxy 四、SecurityFilterChain 五、Security Filter 六、打印出 Security Filter 七、添加自定义 Filter 到 Filter Chain 八、处理 Security 异常 九、保存认证之间的…...

排序优化:如何实现一个通用的、高性能的排序函数?
文章来源于极客时间前google工程师−王争专栏。 几乎所有的编程语言都会提供排序函数,比如java中的Collections.sort()。在平时的开发中,我们都是直接使用,这些排序函数是如何实现的?底层都利用了哪种排序算法呢? 问题…...

车载开发学习——CAN总线
CAN总线又称为汽车总线,全程为“控制器局域网(Controller Area Network)”,即区域网络控制器,它将区域内的单一控制单元以某种形式连接在一起,形成一个系统。在这个系统内,大家以一种大家都认可…...

2023年知名国产数据库厂家汇总
随着信创国产化的崛起,大家纷纷在寻找可替代的国产数据库厂家。这里小编就给大家汇总了一些国内知名数据库厂家,仅供参考哦! 2023年知名国产数据库厂家汇总 1、人大金仓 2、瀚高 3、高斯 4、阿里云 5、华为云 6、浪潮 7、达梦 8、南大…...

【ARM Coresight SoC-400/SoC-600 专栏导读】
文章目录 1. ARM Coresight SoC-400/SoC-600 专栏导读目录1.1 Coresight 专题1.1.1 Performance Profiling1.1.2 ARM Coresight DS-5 系列 1. ARM Coresight SoC-400/SoC-600 专栏导读目录 本专栏全面介绍 ARM Coresight 系统 及SoC-400, SoC-600 中的各个组件。 1.1 Coresigh…...
在Go中创建自定义错误
引言 Go提供了两种在标准库中创建错误的方法,[errors.New和fmt.Errorf],当与用户交流更复杂的错误信息时,或在调试时与未来的自己交流时,有时这两种机制不足以充分捕获和报告所发生的情况。为了传达更复杂的错误信息并实现更多的…...

Vue.js2+Cesium1.103.0 十三、通过经纬度查询 GeoServer 发布的 wms 服务下的 feature 对象的相关信息
Vue.js2Cesium1.103.0 十三、通过经纬度查询 GeoServer 发布的 wms 服务下的 feature 对象的相关信息 Demo <template><divid"cesium-container"style"width: 100%; height: 100%;"><div style"position: absolute;z-index: 999;bott…...

使用STM32怎么喂狗 (IWDG)
STM32F1 的独立看门狗(以下简称 IWDG)。 STM32F1内部自带了两个看门狗,一个是独立看门狗 IWDG,另一个是窗口看门狗 WWDG, 本章只介绍独立看门狗 IWDG,窗口看门狗 WWDG 会在后面章节介绍。 本章要实现的功能…...

GEE:计算和打印GEE程序的执行时间
作者:CSDN @ _养乐多_ 本文记录了计算和打印程序的执行时间的Google Earth Engine (GEE)代码,并举例说明。 大家在执行GEE代码的时候,有时候为了对比两个不同的脚本,不知道代码执行花费了多少时间。本文记录了打印代码执行时间的函数,并举了一个应用案例说明。可以知道…...

GDPU 数据结构 天码行空5
一、实验目的 1.掌握队列的顺序存储结构 2.掌握队列先进先出运算原则在解决实际问题中的应用 二、实验内容 仿照教材顺序循环队列的例子,设计一个只使用队头指针和计数器的顺序循环队列抽象数据类型。其中操作包括:初始化、入队…...
SQLAlchemy学习-12.查询之 order_by 按desc 降序排序
前言 sqlalchemy的query默认是按id升序进行排序的,当我们需要按某个字段降序排序,就需要用到 order_by。 order_by 排序 默认情况下 sqlalchemy 的 query 默认是按 id 升序进行排序的 res session.query(Project).all() print(res) # [<Project…...

如何轻松打造数字人克隆系统+直播系统?OEM教你快速部署数字人SaaS系统源码
数字人做为国内目前最热门的人工智能创业赛道,连BAT都在跑步入局,中小企业更是渴望不渴及。但随着我国数字人头部品牌企业温州专帮信息科技有限公司旗下灰豚AI数字人平台的开源。使得中小企业零门槛可以轻松打造灰豚AI数字人一模一样的平台。灰豚数字人A…...

药物滥用第四篇介绍
OXY: 羟考酮(Oxycodone,OXY),分子式为C18H21NO4,是一种半合成的蒂巴因衍生物。羟考酮为半合成的纯阿片受体激动药,其作用机制与吗啡相似,主要通过激动中枢神经系统内的阿片受体而起镇…...

Apache Doris (四十三): Doris数据更新与删除 - Update数据更新
🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹哥教你大数据个人主页-哔哩哔哩视频 目录 1. Update数据更新原理...

面试算法29:排序的循环链表
问题 在一个循环链表中节点的值递增排序,请设计一个算法在该循环链表中插入节点,并保证插入节点之后的循环链表仍然是排序的。 分析 首先分析在排序的循环链表中插入节点的规律。当在图4.15(a)的链表中插入值为4的节点时&…...

python中不可变类型和可变类型
不可变类型:修改之后内存存储地址不会发生改变 可变类型:修改之后内存存储地址发生改变 set...
vue3封装Axios库的 API 请求并使用拦截器来处理请求和响应
目录 为什么添加封装该部分? 具体代码: 对代码的解释: 如何使用? 为什么添加封装该部分? 简化发送 HTTP 请求的流程提供统一的错误处理机制支持用户状态管理和鉴权具备良好的扩展性和灵活性提高开发效率并使得代码…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...

Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...