分类预测 | Matlab实现WOA-GRU鲸鱼算法优化门控循环单元的数据多输入分类预测
分类预测 | Matlab实现WOA-GRU鲸鱼算法优化门控循环单元的数据多输入分类预测
目录
- 分类预测 | Matlab实现WOA-GRU鲸鱼算法优化门控循环单元的数据多输入分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果





基本描述
1.Matlab实现WOA-GRU鲸鱼算法优化门控循环单元的数据多输入分类预测,运行环境Matlab2020b及以上;
2.基于鲸鱼算法(WOA)优化门控循环单元(GRU)分类预测,优化参数为,学习率,隐含层节点,正则化参数;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。
程序设计
- 完整程序和数据获取方式1:私信博主,同等价值程序兑换;
- 完整程序和数据下载方式2(资源处直接下载):Matlab实现WOA-GRU鲸鱼算法优化门控循环单元的数据多输入分类预测
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problemscurve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a; % Eq. (2.3) in the paperC=2*r2; % Eq. (2.4) in the paperb=1; % parameters in Eq. (2.5)l=(a2-1)*rand+1; % parameters in Eq. (2.5)p = rand(); % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5 if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader; % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
分类预测 | Matlab实现WOA-GRU鲸鱼算法优化门控循环单元的数据多输入分类预测
分类预测 | Matlab实现WOA-GRU鲸鱼算法优化门控循环单元的数据多输入分类预测 目录 分类预测 | Matlab实现WOA-GRU鲸鱼算法优化门控循环单元的数据多输入分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现WOA-GRU鲸鱼算法优化门控循环单元的数据多输入…...
特定深度节点链表
题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 经典BFS与简单链表结合的题目。 #define MAX_DEPTH (1000)struct ListNode** listOfDepth(struct TreeNode* tree, int* returnSize) {*returnSize 0;struct ListNode **ans (…...
【css】背景换颜色
更换前 longin.html <!DOCTYPE html> <html lang"en" > <head><meta charset"UTF-8"><title>login</title><link href"/css/style.css" type"text/css" rel"stylesheet"><s…...
什么是美颜sdk?直播实时美颜sdk的工作流程和架构分析
在现代社交媒体和娱乐行业中,直播已经成为了一种受欢迎的娱乐形式,同时实时美颜也变得越来越重要。直播实时美颜SDK的工作流程和架构在这一领域起到了关键作用。本文将深入探讨这些SDK的内部机制,从而理解它们如何为用户提供出色的美颜效果。…...
第二证券:跌破3000点,热搜第一!
今天上午,“沪指开盘跌破3000点关口”冲上百度热搜榜榜首。 上午收盘,上证指数下跌0.27%,报2997.22点;深证成指下跌0.36%,创业板指下跌0.44%。 赛道股发力,光伏、风电、新能源轿车等板块盘中冲高。房地产…...
IJCAI2023【基于双曲空间探索的非独立同分布联邦学习】
1、介绍汇报的主题及汇报者 2、粗略介绍面临的挑战及出发点 3、介绍一下预备知识 4、解决方案 5、总览 6、实验设置 7、实验 8、结论...
实现Linux下Word转PDF、Java调用命令方式
使用 LibreOffice 实现 Word 转 PDF 和 Java 调用命令 1、 安装 LibreOffice 外网安装 # 一键安装 yum install -y libreoffice # 验证版本 libreoffice --version # Warning: -version is deprecated. Use --version instead. # LibreOffice 7.5.6.2 f654817fb68d6d4600d7…...
Java并发-06-AQS(AbstractQueuedSynchronizer)相关
1-概述 AQS全称是 AbstractQueuedSynchronizer,是阻塞式锁和相关的同步器工具的框架。同步器的设计是基于模板方法模式的,也就是说,使用者需要继承同步器并重写指定的方法,随后将同步器组合在自定义同步组件的实现中,并…...
【Python接口自动化】--深入了解HTTP接口基本组成和网页构建原理
引言 Python接口自动化有着广泛的应用场景,但是在实际使用过程中,可能会出现一些问题。比如,你不知道HTTP接口的基本构成,也不清楚网页是如何构建的。 这时,你就需要深入了解HTTP接口的基本组成和网页构建原理。通过本…...
window mysql5.7.27 启用SSL openssl mysql_ssl_rsa_setup
应客户监管部门要求 mysql必须要启用SSL。由于mysql安装在window上,启用过程中遇到了不少的坑,在此记录一下。 安装openssl 如果已经安装过可跳过此步 https://slproweb.com/download/Win64OpenSSL-1_1_1w.msi复制到浏览器下载后安装即可。如果需要其他…...
性能测试-JMeter分布式测试及其详细步骤
性能测试概要 性能测试是软件测试中的一种,它可以衡量系统的稳定性、扩展性、可靠性、速度和资源使用。它可以发现性能瓶颈,确保能满足业务需求。很多系统都需要做性能测试,如Web应用、数据库和操作系统等。 性能测试种类非常多,…...
学习gin-vue-admin之创建api和swagger
文章目录 go:generateViper 读写配置文件ZAP 保存日志定时任务创建apimodel步骤 1. 创建service步骤 2. 创建api步骤 3. 创建router 初始化总路由启动go-swagger路由配置swag init test将嵌套结构定义为指针或对象利弊结构体嵌套学习资源 go:generate //go:generate go env -w …...
2023-10-17 mysql-innodb-解析write_row的record的一行数据-分析
摘要: 2023-10-17 mysql-innodb-解析write_row的record的一行数据-分析. record是一行数据的序列化后的一整个字节流, 在innodb中需要解读出字段. 本文分析如何解析record, 以便学习这种技巧. row_mysql_store_col_in_innobase_format 调用堆栈: #0 row_mysql_store_col_in…...
认识web自动化测试!
1.什么是自动化测试? 自动化测试的概念: 软件自动化测试就是通过测试工具或者其他手段,按照测试人员的预定计划对软件产品进行自动化测试,他是软件测试的一个重要组成部分,能够完成许多手工测试无法完成或者难以实现的测试工作&a…...
多商户进驻小程序商城的作用是什么
多商户进驻商城简单来说就是在一个商城里,由经营者邀请同行、异业商家进驻到商城里(子商户),可丰富商城经营业态,满足客户多方购物需求,打造购物商圈及经营者获得更多收益等。 通过【雨科】平台的多商户进驻…...
接口响应慢该如何排查
不知道大家有没有遇到这种情况,接口业务逻辑写完后,用 postman 一调,发现接口响应时间好长,不得不对接口进行优化。但是此时接口的代码往往逻辑比较复杂,调用层次也比较多,很难定位到耗时较长的代码块。 遇…...
spring boot MongoDB实战
文章目录 项目搭建文章评论实体类的编写文章评论的基本增删改查根据上级ID查询文章评论的分页列表MongoTemplate实现评论点赞 GITHUB 项目搭建 <?xml version"1.0" encoding"UTF-8"?><project xmlns"http://maven.apache.org/POM/4.0.0&q…...
企业数字化转型时,会遇到的5大挑战
企业数字化转型时,会遇到的5大挑战添加链接描述 数字化转型已然是当今商业战略的一大基石,根据Gartner的《2023年度董事会调查》显示,有89%的企业将数字业务视为其增长的核心。但该研究的另一项统计数据也显示:在这些企业中&…...
动态语句 sqlserver
EXEC sp_executesql DynamicSQL, NFirstName NVARCHAR(50), LastName NVARCHAR(50), FirstName, LastName在EXEC sp_executesql语句中,后面的参数需要按特定顺序传递。这些参数的顺序如下: 1.第一个参数是动态SQL语句本身,通常是一个NVARCHA…...
【一文清晰】单元测试到底是什么?应该怎么做?
我是java程序员出身,后来因为工作原因转到到了测试开发岗位。测试开发工作很多年后,现在是一名自由职业者 1、什么是单元测试 2、该怎么做单元测试 一、什么是单元测试? 单元测试(unit testing),是指对软件…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
