金融统计学方法:神经网络
目录
1.神经网络
2.深度神经网络
3.案例分析
1.神经网络
神经网络是模仿人脑神经元工作原理而设计的一种算法模型。在一个基本的神经网络中,存在多个“神经元”或称为“节点”,这些节点被组织成多个层次。每个节点都接收前一层的输入,进行加权求和,并通过一个激活函数产生输出。
神经网络主要由以下几个部分组成:
- 输入层:这是神经网络的第一层,用于接收外部数据。
- 隐藏层:位于输入层和输出层之间的层,可以有一个或多个。
- 输出层:将神经网络的结果输出给外部环境。
- 权重与偏置:每个连接都有一个权重,每个节点都有一个偏置。
- 激活函数:决定神经元是否应该被“激活”或输出其值。
2.深度神经网络
深度神经网络(DNN)基本上是一个有很多隐藏层的神经网络。这些额外的层使得DNN能够学习和表示更复杂的特征和模式。简而言之,一个“深”的网络意味着它有更多的层次和更多的能力,但同时也意味着它需要更多的数据和计算资源来进行训练。
深度学习的兴起归功于几个关键因素:
- 大数据:深度网络需要大量的训练数据。
- 计算能力的增强:如GPU的出现,使得大规模矩阵操作更为高效。
- 算法进步:如ReLU激活函数、Dropout等技术的引入,帮助解决梯度消失和过拟合问题。
3.案例分析
下面利用神经网络来解决XOR问题。
XOR问题是指异或逻辑运算,对于两个二进制输入,XOR运算的定义如下:

从上面的表格可以看出,只有当两个输入不同时,输出才为1;如果两个输入相同,则输出为0。
XOR问题在神经网络领域的重要性在于:单个感知机(或称为线性单元)不能解决XOR问题,因为XOR函数不是线性可分的。这意味着你不能画一条直线来区分输出为1和输出为0的数据点。但是,使用一个具有至少一个隐藏层的多层神经网络可以解决XOR问题,这证明了引入隐藏层的重要性和多层神经网络的能力。
首先绘制XOR数据点:
import matplotlib.pyplot as plt# XOR 数据
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])plt.scatter(X[y[:,0] == 0][:, 0], X[y[:,0] == 0][:, 1], color='blue', label='0')
plt.scatter(X[y[:,0] == 1][:, 0], X[y[:,0] == 1][:, 1], color='red', label='1')
plt.xlabel('Input A')
plt.ylabel('Input B')
plt.legend()
plt.title('XOR Data Points')
plt.show()
结果图;

接下来利用神经网络进行预测:
import numpy as np
import matplotlib.pyplot as plt# 定义Sigmoid函数及其导数
def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):return x * (1 - x)# 定义神经网络结构
input_neurons = 2
hidden_neurons = 4
output_neurons = 1# 初始化权重和偏置
np.random.seed(0)
input_hidden_weights = np.random.rand(input_neurons, hidden_neurons)
hidden_output_weights = np.random.rand(hidden_neurons, output_neurons)
hidden_bias = np.random.rand(1, hidden_neurons)
output_bias = np.random.rand(1, output_neurons)# 定义训练数据 (XOR problem)
X = np.array([[0, 0],[0, 1],[1, 0],[1, 1]
])
y = np.array([[0],[1],[1],[0]
])learning_rate = 0.5
epochs = 10000
errors = []# 训练神经网络
for epoch in range(epochs):# 前向传播hidden_layer_input = np.dot(X, input_hidden_weights) + hidden_biashidden_layer_output = sigmoid(hidden_layer_input)output_layer_input = np.dot(hidden_layer_output, hidden_output_weights) + output_biaspredicted_output = sigmoid(output_layer_input)# 计算误差error = y - predicted_output# 记录MSEmse = np.mean(np.square(error))errors.append(mse)# 反向传播d_predicted_output = error * sigmoid_derivative(predicted_output)error_hidden_layer = d_predicted_output.dot(hidden_output_weights.T)d_hidden_layer = error_hidden_layer * sigmoid_derivative(hidden_layer_output)# 更新权重和偏置hidden_output_weights += hidden_layer_output.T.dot(d_predicted_output) * learning_rateoutput_bias += np.sum(d_predicted_output, axis=0, keepdims=True) * learning_rateinput_hidden_weights += X.T.dot(d_hidden_layer) * learning_ratehidden_bias += np.sum(d_hidden_layer, axis=0, keepdims=True) * learning_rateprint(predicted_output)# 绘制误差曲线
plt.plot(errors)
plt.title('Error (MSE) over Epochs')
plt.xlabel('Epochs')
plt.ylabel('Mean Squared Error (MSE)')
plt.show()
预测结果:
[[0.01707759][0.98487483][0.98482722][0.01675426]]
误差曲线如下;

可见,随着迭代次数的增加, 均方误差MSE越来越小,最终收敛到0。
相关文章:
金融统计学方法:神经网络
目录 1.神经网络 2.深度神经网络 3.案例分析 1.神经网络 神经网络是模仿人脑神经元工作原理而设计的一种算法模型。在一个基本的神经网络中,存在多个“神经元”或称为“节点”,这些节点被组织成多个层次。每个节点都接收前一层的输入,进行…...
任何人不知道这款超实用的配音软件,我都会伤心的OK?
看完一段精彩的视频,令人陶醉的原因之一就是配音,有的充满感情,有的字正腔圆,相信很多人都不知道这样的声音是怎么配出来的?今天,小编就来给大家分享一款超实用的配音软件,不仅操作简单…...
Linux查看日志文件的常用命令
1、查看文件最后1000行内容 tail -n 1000 filename 2、实时查看文件最后1000行内容,动态刷新 tailf -n 1000 filename tail -f -n 1000 filename 3、按照关键字搜索日志 cat filename | grep 关键字 4、按照关键字搜索并包含前(后)多少行 【(A前B后C前…...
AcWing算法分享系列——二分图
这是AcWing算法分享系列的第一篇文章,我们先从图论的知识下手(因为我觉得图论的只是好理解些)。 这次我们主要讲的就是二分图,二分图这次我们主要讲的就是最基础的两个板块: 二分图的判定(染色法)二分图的完美匹配(匈牙利算法)我们这一篇文章先从二分图的概念开始入手…...
【Excel单元格类型的解析校验】Java使用POI解析excel数据
一、使用的maven依赖: <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>2.1.7</version> </dependency> <dependency><groupId>org.apache.poi</groupId&…...
【运维知识高级篇】超详细的Jenkins教程5(pipeline流水线配置+分布式构建)
CI/CD是持续集成,持续部署,集成就是开发人员通过自动化编译,发布,测试的手段集成软件,在开发的测试环境上测试发现自己的错误;持续部署是自动化构建,部署,通常也是在测试环境上进行&…...
为什么要在电影院装监控?有什么作用?
近期小编在网上看到有很多人在讨论:电影院的摄像头有多高清?看电影时的小动作放映员都能看得一清二楚?答案是:是的。但大家也不必有心理负担,电影院的监控目的不是为了监控观众,更多的是为了保障观影者的权…...
攻防世界题目练习——Web引导模式(三)(持续更新)
题目目录 1. mfw2. Cat3.4.5. 1. mfw 进去看到网页和页面内容如下: 看到url的参数 ?pageabout ,我以为是文件包含什么的,反复试了几次,想用 …/…/…/…/etc/passwd ,但是发现.似乎被过滤了,实在不知道怎…...
Python制作PDF转Word工具(Tkinter+pdf2docx)
一、效果样式 二、核心点 1. 使用pdf2docx完成PDF转换Word 安装pdf2docx可能会报错,安装完成引入from pdf2docx import Converter运行也可能报错,可以根据报错提示看缺少那些库,先卸载pip uninstall xxx,使用pip install python-docx -i htt…...
有哪些手段可以优化 CSS, 提高性能
CSS优化是Web开发中提高性能和用户体验的关键部分。下面详细解释一些CSS优化的方法,以提高性能: 合并和压缩CSS文件: 合并文件:将多个CSS文件合并成一个,以减少HTTP请求次数。这可以通过构建工具(如Webpack)…...
ARM可用的可信固件项目简介
安全之安全(security)博客目录导读 目录 一、TrustedFirmware-A (TF-A) 二、MCUboot 三、TrustedFirmware-M (TF-M) 四、TF-RMM 五、OP-TEE 六、Mbed TLS 七、Hafnium 八、Trusted Services 九、Open CI 可信固件为Armv8-A、Armv9-A和Armv8-M提供了安全软件的参考实现…...
信创办公–基于WPS的Word最佳实践系列 (图文环绕方式)
信创办公–基于WPS的Word最佳实践系列 (图文环绕方式) 目录 应用背景操作步骤1、 打开布局选项中图文环绕方式的方法2、 图文环绕三大类型 应用背景 在Word中,对文字和图片进行排版时,采用各种不同的图片与文字组合效果能够使页面…...
Naive UI数据表格分页pageCount配置没效果
吐槽:因为naive-ui是基于vue3,所以目前的组件资料是少之又少啊,虽然好用,但感觉没有特别的普及。 背景:记得1年前我第一次碰到了这个问题,在列表里使用:pagination分页,怎么都不显示页码&#…...
Kibana Discover数据查询
步骤1:打开管理页面(Management) 步骤2: 因为前面的章节导入航班数据的时候,自动创建了一个名字叫kibana_sample_data_flights的航班数据索引,如果我们只想搜索kibana_sample_data_flights索引的数据,则不需要通配符&…...
笔记 | 编程经验谈:如何正确的使用内存
笔记 | 编程经验谈:如何正确的使用内存 首先我们要了解内存的分配方式。一般来说,内存的分配方式有三种: 1.从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。 2.在栈上创建。在执行函数时,函数内…...
C语言入门-1.1 C语言概述
想要学好一门计算机编程语言,就和谈一个女朋友是一样的,需要对其深入了解。 1、计算机语言 (1)什么是计算机语言? 顾名思义,就是计算机之间交流的语言,就和人一样,咱们都是使用普通…...
周记之学习总结
你在人群中看到的每一个耀眼的女孩,都是踩着刀尖过来的。你如履平地般地舒适坦然,当然不配拥有任何光芒; 10.11-10.12 思来想去还是不舍得,搞了一下这个jwt,看了很多视频和博客,一直没看懂,两…...
程序设计:C++ 一个可以放入共享内存的string模板
共享内存由于是多进程共享的,里面的数据不适合包含指针,因为共享内存在不同进程里的地址并不相同。尽管可以在连接共享内存时指定连接地址,但是,这样做限制太多: 不同硬件、系统这个地址可能不一样,没有通…...
【EI会议征稿】第三届应用力学与先进材料国际学术会议(ICAMAM 2024)
第三届应用力学与先进材料国际学术会议(ICAMAM 2024) 2024 3rd International Conference on Applied Mechanics and Advanced Materials(ICAMAM 2024) 第三届应用力学与先进材料国际学术会议(ICAMAM 2024)…...
Python -- I/O编程
文章目录 一、文件读写1. 读文件2. 二进制文件3. 字符编码4. 写文件 二、StringIO和BytesIO三、操作文件和目录1. 操作系统命令2. 操作文件 四、序列化五、 JSON六、异步IO1. 协程2. asyncioasync/awaitaiohttp 一、文件读写 Python内置了读写文件的函数,用法和C是…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...
es6+和css3新增的特性有哪些
一:ECMAScript 新特性(ES6) ES6 (2015) - 革命性更新 1,记住的方法,从一个方法里面用到了哪些技术 1,let /const块级作用域声明2,**默认参数**:函数参数可以设置默认值。3&#x…...
