当前位置: 首页 > news >正文

2022年亚太杯APMCM数学建模大赛B题高速列车的优化设计求解全过程文档及程序

2022年亚太杯APMCM数学建模大赛

B题 高速列车的优化设计

原题再现:

  2022年4月12日,中国高铁复兴号CR450动车组在开放线上成功实现单车时速435公里,相对速度870公里,创造了高铁动车组列车穿越开放线和隧道速度的世界纪录。新一代标准动车组“复兴号”是中国自主研发的具有完全知识产权的新一代高速列车。它集成了大量国内现代高科技,在牵引、制动、网络、转向架、车轴等关键技术上取得了重要突破。这是中国科技创新的又一重大成果。图1是高速铁路几何结构的简化模型。
在这里插入图片描述
  中国高速铁路的车头结构为子弹头,日本高速铁路采用鸭嘴结构。图2显示了四种典型高速铁路头部结构的简化模型,包括TP1、TP2、TP3和TP4。其中,高铁轨头结构的设计主要考虑空气阻力和噪声水平。
在这里插入图片描述
  高速铁路弹头的设计过程不仅要以空气动力学为基本原理,还要反复进行仿真和实验。为了实现车头和车身周围的气流、空气动力等相关参数之间的优化方案,可以经过数千次计算和实验进行优化。图3显示了流线型高速轨头结构的不同区域。
在这里插入图片描述
  请收集相关数据,建立几个数学模型,并回答以下问题:

  问题1:请建立高速铁路空气阻力的数学模型,考虑一般条件和极端天气(如雨、雪、风)下高速铁路几何形状与受力之间的关系,模拟圆锥形和四种典型高速铁路的空气阻力分布,如图2所示,并选择空气阻力最小的最佳高速铁路形状。

  问题2:请分析高铁轨头曲线弧度对空气阻力的影响,建立高铁外形优化模型,设计出最佳的高铁外形,使高铁受空气阻力最小,并绘制出优化后的高铁形状草图。

  问题3:请建立高铁产生噪声的数学模型,分析锥形和四种典型高铁产生的噪声强度,如图2所示,模拟它们各自的噪声分布,选择产生噪声最小的最佳高铁形状。

  问题4:请结合前三个问题的结果,建立高铁形状的综合优化模型,设计出最佳的高铁形状,同时提高高铁列车的速度,降低噪音。绘制高速铁路的形状草图,并给出相应的结构参数。

整体求解过程概述(摘要)

  随着计算领域的快速发展,追求高速、低噪声污染的气动外形显得尤为重要。本文建立了相应的数学模型来研究高速铁路的速度域和噪声域,并进行了仿真。

  对于问题1,基于标准𝑘 − 𝜀 模型,分别建立了四个初步的高速列车模型,并对通用车头进行了二维受力分析,并利用RWIND风洞软件对四个模型进行了仿真,定义了用于描述的Δ因子,并对每个模型的Δ因子进行了比较,得出TP1是空气阻力最小的最佳高速列车形状。

  对于问题2,我们将TP1分为5个部分,采用Pareto搜索方法对其进行优化和微调,并建立了优化的高铁模型。针对问题3,以及许多学者对高速列车噪声污染进行了研究,许多国家也出台了相应的限速规定。基于湍流的物理特性,我们对以85m/s速度行驶的高速列车进行了建模和分析,并得出结论,TP4是产生最小噪声的最佳高速列车形状。

  最后,我们结合TP1和TP4的特点,使用多目标粒子群算法设计了一种新的列车,该列车在风洞实验中具有更平衡的力分布,即良好的速度上限和对环境的低噪声,并且与Δ因子相比,新列车的Δ非常好。𝚫TP1=0.0105,𝚫TP4=0.0031,𝚫TPbest=0.0029。比较优化前后的模型可以发现,鼻锥高度减小,鼻锥长度增加,鼻锥变得更光滑;驾驶员室的高度向下调整,流线型的前半部分变得更窄,后半部分的宽度增加。

模型假设:

  1.不同高速铁路的材料相同。

  2.高铁是直的。

  3.风速相同。

  4.身体长度相同。

问题分析:

  问题1
  通过我们对流体连续性原理的分析,本质上流体在流动中的质量守恒,对于理想流体可以得到伯努利方程它是机械能守恒,对于实际流体可以得到泊肃耳定理它是粘性摩擦的存在,这种粘性摩擦会对流体和固体的相对运动产生一种阻力,据此建立空气阻力模型来研究高速铁路的空气阻力。当流体速度非常快时,会产生湍流。在这方面𝑘 − 𝜀 应用该模型求解湍流动能及其耗散率方程。对于四种高速铁路形状,在极端天气(如雨雪)下,我们使用受力分析方法来表示受力关系,对于不同形状的高速铁路,我们使用Blender软件制作了四个高速铁路前端模型,并对这四个模型进行了风洞实验,可以直观地感受到空气对每个部件的阻力,通过比较空气阻力分布来选择空气阻力分布,我们选择了空气阻力最小的高速铁路形状。最终的TP1是空气阻力最小的最佳高速铁路模型。

  问题2
  在TP1的基础上,基于Pareto搜索过程建立了优化模型,设计出空气阻力最小的最优高铁模型。

  问题3
  我们首先收集了相关的噪声数据,对各国高速列车(列车)的噪声有了一定的了解,然后得出当车速很快时,波面加速了积聚,使空气摩擦增加,噪声也随之增加。对此,建立了高速列车的外部空气动力学噪声模型,并通过湍流中的空气阻力模型提取每个节点的湍流动能湍流耗散率,从而确定每个节点的声功率。然后将Lighthill-Colle声学类比理论与高速铁路压力分布进行比较,实现了空气动力学噪声仿真。TP4最终被确定为产生最小噪声的高速铁路的最佳形状。

  问题4
  在第二个问题中Pareto搜索的基础上,我们使用多目标粒子群算法(MOPSO)结合TP1和TP4的特性来找到近似模型,并在风洞中对该模型进行模拟以获得相关数据。结合第三个问题中理论圆锥曲线的模拟值,优化模型𝚫TPbest=0.0029是TP1和TP4中Δ系数最小的(越小越好),与TP1相比降低了72.38%,降低了6.45%,验证了模型的可行性。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
present00=importdata(’ex00_.txt’);
present01=importdata(’ex01_.txt’);
present02=importdata(’ex02_.txt’);
present03=importdata(’ex03_.txt’);
present04=importdata(’ex04_.txt’);
a00=present00(1:300,3:3);
a01=present01(1:300,3:3);
a02=present02(1:300,3:3);
a03=present03(1:300,3:3);
a04=present04(1:300,3:3);
x=present00(1:300,1:1);
deltaY1 = (a01-a00).ˆ2;
deltaY2 = (a02-a00).ˆ2;
deltaY3 = (a03-a00).ˆ2;
deltaY4 = (a04-a00).ˆ2;
k1=sum(deltaY1);
k2=sum(deltaY2);
k3=sum(deltaY3);
k4=sum(deltaY4);
\begin{tikzpicture}
\draw[->](0,0.1)arc(165:120:5 and 3);
\draw[->](0,-0.3)arc(165:120:5 and 3);
\draw[->](0,-0.5)arc(165:120:5 and 3);
\draw[->](0,-0.7)arc(165:120:5 and 3);
\draw[->](0,-0.1)arc(165:120:5 and 3) ;
\draw[->](0,0.3)arc(165:120:5 and 3);
\draw[rotate around={93:(1.8,1.42)}](1.8,1.3) ellipse(0.5 and 0.3);
\draw[rotate around={-45:(0.4,-0.2)}](0,0) ellipse(0.3 and 0.15);
\end{tikzpicture}
\begin{tikzpicture}
\draw(0,0)arc(80:20:5 and 3);
\draw(0,1)arc(80:20:5 and 3);
\draw(0,-3)--(4,-3);
\draw(0.5,-3)--(0.5,-0.1);
\draw(2.8,-0.9)--(2.8,-3);
\draw(0.6,0.41) ellipse(0.2 and 0.49);
\draw(0.4,0.45) ellipse(0.2 and 0.48);
\draw[rotate around={-45:(3.2,-0.75)}](3.2,-0.75) ellipse(0.15 and 0.38);
\draw(2.5,-0.75)arc(149:100:0.8 and 1.4);
\node[left]at(0.5,-2){$h_{1}$};
\node[left]at(2.8,-2){$h_{2}$};
\node[above]at(0.5,1){$a_{1}b_{1}$};
\draw[->](-0.5,0.45)--(0.2,0.45);
\draw[->](3.8,-1.4)--(3.3,-0.9);
\node[below]at(3.8,-1.4){$p_{2}S_{2}$};
\node[above]at(-0.2,0.45){$p_{1}S_{1}$};
\node[above]at(3.2,-0.2){$a_{2}$};
\node[above]at(3.6,-0.6){$b_{2}$};
\end{tikzpicture}
\begin{tikzpicture}
\draw(2,2) ellipse(1 and 3);
\draw(2,2)ellipse(0.8 and 2.5);
\draw(10,2) ellipse(1 and 3);
\draw(10,2) ellipse(0.8 and 2.5);
\draw(2,-1)--(10,-1);
\draw(2,5)--(10,5);
\draw(2,-0.5)--(10,-0.5);
\draw(2,4.5)--(10,4.5);
\node[above]at (2,5){$a$};
\node[above]at (10,5){$b$};
\draw(2,-1.1)--(2,-2);
\draw(10,-1.1)--(10,-2);
\draw[->](6,-1.5)--(2,-1.5);
\draw[->](6.3,-1.5)--(10,-1.5);
\node[right]at(6,-1.5){$l$};
\draw[->](7,5.2)--(5,5.2);
\draw(1.9,5)--(0.1,5);
\draw(10,4.5)--(0.9,4.5);
\draw[->](5,4.3)--(7,4.3);
\draw(0.3,2)--(1.8,2);
\draw[->](2.1,2)--(4,2);
\draw(4.2,2)--(8,2);
\draw(8.2,2)--(10,2);
\draw(10.2,2)--(12,2);
\draw[->](0.5,3.8)--(0.5,5);
\node[below]at(0.5,3.8){$r+dr$};
\draw[->](0.5,3.3)--(0.5,2);
\draw[->](1,3.3)--(1,4.5);
\node[below]at(1,3.3){$r$};
\draw[->](1,3)--(1,2);
\node[below]at(10.5,2){$p_{b}$};
\node[above]at(6,5.2){$f_{r+dr}$};
\node[below]at(6,4.3){$f_{r}$};
\node[below]at(0.5,2){$P_{a}$};
\node[above]at(4,2){$v$};
\end{tikzpicture}
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

相关文章:

2022年亚太杯APMCM数学建模大赛B题高速列车的优化设计求解全过程文档及程序

2022年亚太杯APMCM数学建模大赛 B题 高速列车的优化设计 原题再现: 2022年4月12日,中国高铁复兴号CR450动车组在开放线上成功实现单车时速435公里,相对速度870公里,创造了高铁动车组列车穿越开放线和隧道速度的世界纪录。新一代…...

OSI网络分层模型

OSI英文全文是Open System Interconnection Reference Model,翻译成中文就是开放式系统互联通信参考模型。 OSI模型分成了七层,部分层次与 TCP/IP 很像,从下到上分别是: 第一层:物理层,网络的物理形式&…...

EOS区块链keosd的RPC API

list_wallets 查看钱包列表 post v1/wallet/list_walletsapi: http://127.0.0.1:8888/v1/wallet/list_walletsparams: 无returns: ["testnet *" ]testnet:钱包名称create 创建钱包 post v1/wallet/createapi: http://127.0.0.1:8888/v1/wallet/createpa…...

React +AntD + From组件重复提交数据(已解决)

开发场景: react Hooks andt 提交form表单内容给数据库(使用antd的form组件) 问题描述 提交是异步的,请提交方式是POST 方式 提交表单内容给后端,却产生了两次提交记录(当然,数据新增了两条数据)。可以…...

spring的简单使用(配合Druid操作数据库)

文章目录 准备数据pom.xml文件中引用需要的库准备好dao层接口和service层接口和实现类准备好 jdbc.properties 和 user.properties编写Druid的jdbcConfig配置类编写spring的配置类SpringConfig编写Dao层的实现类的逻辑测试类参考文献 准备数据 create database if not exists …...

10.20作业

#include “widget.h” #include “ui_widget.h” Widget::Widget(QWidget *parent) QWidget(parent) , ui(new Ui::Widget) { ui->setupUi(this); t new QTimer(this); connect(t, &QTimer::timeout, this, &Widget::timeout_Slot); ui->text->setPlacehold…...

笔记1 Compute Shaders

Wending 2022/10/29 15:43:54 Compute Shaders是在GPU运行却又在普通渲染管线之外的程序,通过Compute Shader我们可以将大量可以并行的计算放到GPU中计算从而节省CPU资源 Wending 2022/10/29 15:44:27 反正不是传统的shader 不常用 博毅创为Blake老师 2022/10/29 15…...

IntelliJ IDEA 2023版本 Debug 时没有Force Step Into 按钮解决方法

IntelliJ IDEA 2023版本 Debug 时没有Force Step Into 按钮解决方法 force step into作用是能够去查看原码, 新版本idea默认移除了这个按钮😢 那么让我们来把它找出来叭✋ 但是我们可以通过设置,使用step into就可以进入系统方法。 1.单击…...

【2024秋招】用友后端BIP部门hr面-2023.8.31

反思 首先,我想为你提供一个背景:HR面试不仅仅是为了了解你的背景和经验,还包括你的性格、沟通能力、问题解决技巧、团队合作精神和其他软性技能。基于你提供的信息,我会提供一些可能影响offer级别的点: 答案的质量&a…...

[ Windows ] ping IP + Port 测试 ip 和 端口是否通畅

开发过程中经常会黑窗口中手动测试一下计划请求的目标ip和端口是否通畅,测试方式如下: 一、单纯测试ip是否能够 ping 通,这个比较熟悉了,运行 cmd 打开黑窗口 输入如下指令,能够如下提示信息,表示端口是通…...

Golang协程的概念、用法、场景及案例

在当今的软件开发领域中,高性能和并发性是很重要的。开发人员需要编写能够有效利用多核处理器的程序,以提高应用程序的性能和响应能力。Go语言(Golang)就是一种在这方面非常强大的编程语言,它提供了一种称为协程&#…...

Redis 主从复制,哨兵,集群——(3)集群篇

目录 1. 前篇回顾 2. Redis 集群是什么? 3. Redis 集群的优点 4. Redis 集群的槽位概念 5. 什么是分片? 6. 如何找到给定key的分片? 7. 分片槽位的设计有什么好处? 8. key映射到节点的三种解决方案 8.1 哈希取余分区 8.…...

Flink之Watermark水印、水位线

Watermark水印、水位线 水位线概述水印本质生成WatermarkWatermark策略WatermarkStrategy工具类使用Watermark策略 内置Watermark生成器单调递增时间戳分配器固定延迟的时间戳分配器 自定义WatermarkGenerator周期性Watermark生成器标记Watermark生成器Watermark策略与Kafka连接…...

uni-app:对数组对象进行以具体某一项的分类处理

一、原始数据 这里定义为五个数组,种类product有aaa,bbb两种 原始数据在data中进行定义 res: {"success": true,"devices": [{no: 0,product: aaa,alias: "设备1",assign: [["a1", "a2", "a3"],[&q…...

顺序队列----数据结构

队列的概念 队列,符合先进先出特点的一种数据结构,是一种特殊的线性表,但它不像线性表一样可以任意插入和删除操作,而是只允许在表的一端插入,也就是在队列的尾部进行插入;只允许在表的另一端进行删除&…...

【Python学习笔记】字符串格式化

1. printf 风格 这种格式化语法 和 传统的C语言printf函数 一样 。 salary input(请输入薪资:)# 计算出缴税额,存入变量tax tax int(salary) *25/100 # 计算出税后工资,存入变量aftertax aftertax int(salary) *75/100 print(税前薪资&…...

RIP,EIGRP,OSPF区别

1. 动态路由协议的作用是什么? 2. 路由协议都有哪些种类? 3. 如何判断路由协议的优劣? -- RIP,EIGRP,OSPF - 动态路由协议 -- 路由协议 - 路由器上的软件 -- 帮助路由器彼此之间同步路由表 -- 相互的传递…...

驱动day2作业

编写应用程序控制三盏灯亮灭 head.h #ifndef __HEAD_H__ #define __HEAD_H__ #define PHY_LED1_MODER 0x50006000 #define PHY_LED2_MODER 0x50007000 #define PHY_LED1_ODR 0x50006014 #define PHY_LED2_ODR 0x50007014 #define PHY_RCC 0x50000A28#endif demo1.c #includ…...

MySQL基本操作之创建数据表

设计表: 学生表(Student): 学号(StudentID)- 主键,用于唯一标识每个学生姓名(Name)性别(Gender)年龄(Age)出生日期(BirthDate)地址(Address)电话(Phone)邮箱(Email)课程表(Course): 课程号(CourseID)- 主键,用于唯一标识每门课程课程名(CourseNam…...

rk平台android12修改dp和喇叭同时输出声音

客户的rk3588主板android12系统,要求接上type-c 进行dp输出显示以后,dp端和主板端都有声音。rk原有系统默认是接上dp显示以后,主板的喇叭声音会被切掉,导致没有声音。要让喇叭和dp同时输出声音需要做如下修改: --- a/…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...