当前位置: 首页 > news >正文

Golang协程的概念、用法、场景及案例

在当今的软件开发领域中,高性能和并发性是很重要的。开发人员需要编写能够有效利用多核处理器的程序,以提高应用程序的性能和响应能力。Go语言(Golang)就是一种在这方面非常强大的编程语言,它提供了一种称为协程(Goroutine)的并发模型。

什么是Golang协程?

协程是一种轻量级的线程,它可以实现并发执行的并行操作。协程是Go语言中的一个核心特性,它使得程序能够以并发的方式运行,并且非常高效。与传统的线程相比,协程的创建和销毁成本非常低,可以方便地启动大量的协程来执行并行操作。

Golang的协程不同于其他语言中的线程或进程,它们是由Go语言的运行时系统调度的。协程的调度是基于协作式的,即协程自己主动让出CPU的控制权,而不是依赖于操作系统的调度器。

Golang协程的用法

在Go语言中,要创建一个协程,只需在函数调用前加上关键字"go"。下面是一个简单的示例:

go 函数名()

这样就创建了一个新的协程,并在该协程中执行相应的函数。协程会与主线程并发执行,不会阻塞主线程的执行。

协程之间可以通过通道(Channel)进行通信。通道是一种在多个协程之间同步和传递数据的机制,它能够保证并发安全。通过通道,协程可以发送和接收数据,实现协程之间的协作。

在下面的示例中,我们创建了一个协程来执行耗时的操作,并通过通道将结果返回给主线程:

package mainimport ("fmt""time"
)func longRunningTask() int {time.Sleep(time.Second)return 42
}func main() {result := make(chan int)go func() {result <- longRunningTask()}()fmt.Println("Waiting for result...")fmt.Println("Result:", <-result)
}

在上面的示例中,我们使用了匿名函数来创建一个协程,并通过通道将结果发送给主线程。在主线程中,我们等待结果的返回并打印出来。通过使用协程和通道,我们可以在执行耗时操作时不阻塞主线程的执行。

Golang协程的场景

Golang的协程非常适用于以下场景:

1. 并发执行任务

协程可以非常方便地启动大量的任务并发执行,提高程序的性能和吞吐量。在计算密集型的任务中,可以利用多个协程进行并行计算,加快任务的执行速度。在IO密集型的任务中,可以通过协程来并发处理多个IO操作,提高程序的响应能力。

2. 高并发服务器

协程非常适合用于构建高并发的服务器程序。通过协程和通道,可以实现高效的并发编程模型。每个客户端连接可以对应一个协程,这样可以同时处理多个客户端请求,提高服务器的并发处理能力。

3. 异步IO操作

协程可以很方便地处理异步IO操作。通过协程和通道,可以实现非阻塞的IO操作,并在IO操作完成后通知相应的协程继续执行。这样可以避免在IO操作上浪费过多的时间,提高程序的响应速度。

Golang协程的案例

下面是一个使用协程和通道的案例,展示了如何并发下载多个文件:

package mainimport ("fmt""io/ioutil""net/http""time"
)func downloadFile(url string, c chan<- string) {resp, err := http.Get(url)if err != nil {c <- fmt.Sprintf("Error: %v", err)return}defer resp.Body.Close()data, err := ioutil.ReadAll(resp.Body)if err != nil {c <- fmt.Sprintf("Error: %v", err)return}filename := fmt.Sprintf("%d.txt", time.Now().UnixNano())err = ioutil.WriteFile(filename, data, 0644)if err != nil {c <- fmt.Sprintf("Error: %v", err)return}c <- fmt.Sprintf("Success: %s", filename)
}func main() {urls := []string{"https://example.com/file1.txt","https://example.com/file2.txt","https://example.com/file3.txt",}results := make(chan string)for _, url := range urls {go downloadFile(url, results)}for _ = range urls {fmt.Println(<-results)}
}

在上面的案例中,我们创建了一个协程来下载每个文件,并将下载结果发送到结果通道中。主线程等待所有协程完成下载,并将结果从结果通道中接收并打印出来。

通过使用协程,我们可以并发地下载多个文件,提高下载的效率。
当然,下面我将为你介绍3个使用Golang协程的案例,并提供相应的代码和讲解。

案例1: 并发计算斐波那契数列

斐波那契数列是一个经典的计算问题,下面的示例展示了如何使用协程并发地计算斐波那契数列中的第n个数字。

package mainimport ("fmt""time"
)func fibonacci(n int, c chan<- int) {x, y := 0, 1for i := 0; i < n; i++ {c <- xtime.Sleep(time.Millisecond * 100) // 模拟计算耗时x, y = y, x+y}close(c)
}func main() {c := make(chan int)go fibonacci(10, c)for num := range c {fmt.Println(num)}
}

在上面的代码中,我们定义了一个fibonacci函数,它使用协程并发地计算斐波那契数列中的前n个数字,并将结果发送到通道c中。在main函数中,我们通过range语句从通道中读取结果并打印出来。

案例2: 并发爬取网页内容

在网络爬虫的场景中,我们通常需要并发地爬取多个网页的内容。下面的示例展示了如何使用协程并发地爬取多个网页的内容,并将结果发送到通道。

package mainimport ("fmt""io/ioutil""net/http"
)func crawl(url string, c chan<- string) {resp, err := http.Get(url)if err != nil {c <- fmt.Sprintf("Error: %v", err)return}defer resp.Body.Close()body, err := ioutil.ReadAll(resp.Body)if err != nil {c <- fmt.Sprintf("Error: %v", err)return}c <- string(body)
}func main() {urls := []string{"https://example.com","https://google.com","https://github.com",}results := make(chan string)for _, url := range urls {go crawl(url, results)}for i := 0; i < len(urls); i++ {fmt.Println(<-results)}
}

在上面的代码中,我们定义了一个crawl函数,它使用协程并发地爬取每个给定的URL的内容,并将结果发送到通道results中。在main函数中,我们遍历URL列表,并使用协程同时爬取多个网页的内容。然后,通过读取通道中的结果,我们将每个网页的内容打印出来。

案例3: 并发处理图片处理任务

在图像处理的场景中,我们通常需要并发地处理大量的图片。下面的示例展示了如何使用协程并发地处理多个图片,并将结果发送到通道。

package mainimport ("fmt""image""image/jpeg""io/ioutil""os""path/filepath"
)func processImage(filename string, c chan<- string) {file, err := os.Open(filename)if err != nil {c <- fmt.Sprintf("Error: %v", err)return}defer file.Close()img, err := jpeg.Decode(file)if err != nil {c <- fmt.Sprintf("Error: %v", err)return}// 图像处理逻辑...// 这里只是简单地将图片大小调整为50x50像素resized := resize(img, 50, 50)// 保存处理后的图片outputFilename := filepath.Join("output", filepath.Base(filename))outputFile, err := os.Create(outputFilename)if err != nil {c <- fmt.Sprintf("Error: %v", err)return}defer outputFile.Close()err = jpeg.Encode(outputFile, resized, nil)if err != nil {c <- fmt.Sprintf("Error: %v", err)return}c <- fmt.Sprintf("Success: %s", outputFilename)
}func resize(img image.Image, width, height int) image.Image {// 图像缩放逻辑...// 这里只是简单地调整图像大小return image.NewRGBA(image.Rect(0, 0, width, height))
}func main() {// 获取所有图片文件files, err := ioutil.ReadDir("images")if err != nil {fmt.Println(err)return}results := make(chan string)for _, file := range files {go processImage(filepath.Join("images", file.Name()), results)}for i := 0; i < len(files); i++ {fmt.Println(<-results)}
}

在上面的代码中,我们定义了一个processImage函数,它使用协程并发地处理每个给定的图片。在这个示例中,我们只是简单地将图片的大小调整为50x50像素,并保存到output目录中。在main函数中,我们遍历图片文件夹中的所有图片文件,并使用协程并发地处理每个图片。然后,通过读取通道中的结果,我们将每个处理后的图片的文件名打印出来。

总结

Golang的协程是一种非常强大的并发模型,可以帮助我们编写高效的并发程序。协程通过轻量级的线程来实现并发执行的并行操作,可以充分利用多核处理器,提高程序的性能和响应能力。

协程之间通过通道进行通信,可以实现数据的同步和传递。通道可以保证并发安全,避免竞态条件和资源竞争等问题。

协程适用于许多场景,包括并发执行任务、构建高并发服务器和处理异步IO操作等。通过协程,我们可以实现高效的并发编程模型,提高程序的并发处理能力和响应速度。

希望本文对您了解和使用Golang协程有所帮助。如果您对Golang协程还有任何疑问,请随时提问。

相关文章:

Golang协程的概念、用法、场景及案例

在当今的软件开发领域中&#xff0c;高性能和并发性是很重要的。开发人员需要编写能够有效利用多核处理器的程序&#xff0c;以提高应用程序的性能和响应能力。Go语言&#xff08;Golang&#xff09;就是一种在这方面非常强大的编程语言&#xff0c;它提供了一种称为协程&#…...

Redis 主从复制,哨兵,集群——(3)集群篇

目录 1. 前篇回顾 2. Redis 集群是什么&#xff1f; 3. Redis 集群的优点 4. Redis 集群的槽位概念 5. 什么是分片&#xff1f; 6. 如何找到给定key的分片&#xff1f; 7. 分片槽位的设计有什么好处&#xff1f; 8. key映射到节点的三种解决方案 8.1 哈希取余分区 8.…...

Flink之Watermark水印、水位线

Watermark水印、水位线 水位线概述水印本质生成WatermarkWatermark策略WatermarkStrategy工具类使用Watermark策略 内置Watermark生成器单调递增时间戳分配器固定延迟的时间戳分配器 自定义WatermarkGenerator周期性Watermark生成器标记Watermark生成器Watermark策略与Kafka连接…...

uni-app:对数组对象进行以具体某一项的分类处理

一、原始数据 这里定义为五个数组&#xff0c;种类product有aaa,bbb两种 原始数据在data中进行定义 res: {"success": true,"devices": [{no: 0,product: aaa,alias: "设备1",assign: [["a1", "a2", "a3"],[&q…...

顺序队列----数据结构

队列的概念 队列&#xff0c;符合先进先出特点的一种数据结构&#xff0c;是一种特殊的线性表&#xff0c;但它不像线性表一样可以任意插入和删除操作&#xff0c;而是只允许在表的一端插入&#xff0c;也就是在队列的尾部进行插入&#xff1b;只允许在表的另一端进行删除&…...

【Python学习笔记】字符串格式化

1. printf 风格 这种格式化语法 和 传统的C语言printf函数 一样 。 salary input(请输入薪资&#xff1a;)# 计算出缴税额&#xff0c;存入变量tax tax int(salary) *25/100 # 计算出税后工资&#xff0c;存入变量aftertax aftertax int(salary) *75/100 print(税前薪资&…...

RIP,EIGRP,OSPF区别

1. 动态路由协议的作用是什么&#xff1f; 2. 路由协议都有哪些种类&#xff1f; 3. 如何判断路由协议的优劣&#xff1f; -- RIP&#xff0c;EIGRP&#xff0c;OSPF - 动态路由协议 -- 路由协议 - 路由器上的软件 -- 帮助路由器彼此之间同步路由表 -- 相互的传递…...

驱动day2作业

编写应用程序控制三盏灯亮灭 head.h #ifndef __HEAD_H__ #define __HEAD_H__ #define PHY_LED1_MODER 0x50006000 #define PHY_LED2_MODER 0x50007000 #define PHY_LED1_ODR 0x50006014 #define PHY_LED2_ODR 0x50007014 #define PHY_RCC 0x50000A28#endif demo1.c #includ…...

MySQL基本操作之创建数据表

设计表: 学生表(Student): 学号(StudentID)- 主键,用于唯一标识每个学生姓名(Name)性别(Gender)年龄(Age)出生日期(BirthDate)地址(Address)电话(Phone)邮箱(Email)课程表(Course): 课程号(CourseID)- 主键,用于唯一标识每门课程课程名(CourseNam…...

rk平台android12修改dp和喇叭同时输出声音

客户的rk3588主板android12系统&#xff0c;要求接上type-c 进行dp输出显示以后&#xff0c;dp端和主板端都有声音。rk原有系统默认是接上dp显示以后&#xff0c;主板的喇叭声音会被切掉&#xff0c;导致没有声音。要让喇叭和dp同时输出声音需要做如下修改&#xff1a; --- a/…...

经典网络模型

Alexnet VGG VGG的启示 VGGNet采用了多次堆叠3x3的卷积核&#xff0c;这样做的目的是减少参数的数量。 例如&#xff0c;2个3x3的卷积核效果相当于1个5x5的卷积核效果&#xff0c;因为它们的感受野&#xff08;输入图像上映射区域的大小&#xff09;相同。但2个3x3卷积核的参数…...

SystemVerilog Assertions应用指南 Chapter1.29“ disable iff构造

在某些设计情况中,如果一些条件为真,则我们不想执行检验。换句话说,这就像是一个异步的复位,使得检验在当前时刻不工作。SVA提供了关键词“ disable iff来实现这种检验器的异步复位。“ disable iff”的基本语法如下。 disable iff (expression) <property definition> …...

C++设计模式之MVC

MVC&#xff08;Model-View-Controller&#xff09;是一种经典的软件架构模式&#xff0c;用于组织和分离应用程序的不同部分&#xff0c;以提高代码的可维护性、可扩展性和重用性。MVC模式将应用程序分为三个主要组成部分&#xff1a; Model&#xff08;模型&#xff09;&…...

Windows 下Tomcat监测重启

echo off setlocal enabledelayedexpansion rem 链接 set URL"localhost:8080/XXX.jsp" rem tomcat目录 set TOMCAT_HOMED:\apache-tomcat-7.0.100-windows-x64\apache-tomcat-7.0.100 rem 关闭tomcat命令的路径 set CLOSE_CMD%TOMCAT_HOME%\bin\shutdown.bat rem 启…...

数据库管理-第112期 Oracle Exadata 03-网络与ILOM(20231020)

数据库管理-第112期 Oracle Exadata 03-网络与ILOM&#xff08;202301020&#xff09; 在Exadata中&#xff0c;除了对外网络以外&#xff0c;其余网络都是服务于一体机内部各组件的网络&#xff0c;本期对这些网络的具体情况和硬件管理相关做一个讲解。 1 网络分类 1.1 生产…...

Kubeadm部署k8s集群 kuboard

目录 主机准备 主机配置 修改主机名&#xff08;三个节点分别执行&#xff09; 配置hosts&#xff08;所有节点&#xff09; 关闭防火墙、selinux、swap、dnsmasq(所有节点) 安装依赖包&#xff08;所有节点&#xff09; 系统参数设置(所有节点) 时间同步(所有节点) 配…...

虚拟机如何联网【NAT】

查看VMWARE的IP地址 #进入root用户 su -#更改虚拟网卡设置界面 vi /etc/sysconfig/network-scripts/ifcfg-ens33 修改ONBOOT为yes BOOTPROTO为static IPADDR为前面的网段 192.168.211.xx (xx为自己设置的&#xff0c;可以随意设置&#xff0c;前面的为前面查看的IP地址的前…...

机器学习,神经网络中,自注意力跟卷积神经网络之间有什么样的差异或者关联?

如图 6.38a 所示&#xff0c;如果用自注意力来处理一张图像&#xff0c;假设红色框内的“1”是要考虑的像素&#xff0c;它会产生查询&#xff0c;其他像素产生 图 6.37 使用自注意力处理图像 键。在做内积的时候&#xff0c;考虑的不是一个小的范围&#xff0c;而是整张图像的…...

这件事,准备考PMP的都必须知道

大家好&#xff0c;我是老原。 新的一月&#xff0c;新的困惑。最近接到的咨询很多&#xff0c;但的确出现了差异化的特质。 以前的粉丝朋友上来就问&#xff0c;我现在是项目经理&#xff0c;主要负责产品研发&#xff0c;我是考PMP还是NPDP好&#xff1f; 现在的粉丝朋友会…...

elasticsearch常用命令

Elasticsearch概念 ElasticsearchmysqlIndex(索引)数据库Type(类型)表Documents(文档)行Fields列 常用命令 索引 # 索引初始化&#xff0c;number_of_shards:分片数&#xff0c;不可修改&#xff1b;number_of_replicas:副本数&#xff0c;可修改 PUT lagou {"settings…...

2000-2021年上市公司MA并购溢价计算数据(含原始数据+Stata代码)

2000-2021年上市公司M&A并购溢价计算&#xff08;原始数据Stata代码&#xff09; 1、时间&#xff1a;2000-2021年 2、范围&#xff1a;沪深A股上市公司 3、指标&#xff1a; 原始数据指标&#xff1a;事件ID、公司ID、证券代码、业务编码、上市公司交易地位编码、首次公…...

移动端1px-从基本原理到开源解决方案介绍

1px 不够准确&#xff0c;应该说成 1 物理像素 为什么有 1px 这个问题&#xff1f;实现 1px 有哪些方法&#xff1f;这些方法分别有哪些优缺点&#xff1f;开源项目中使用的哪些解决方案&#xff1f;如何在项目中处理 1px 的相关问题&#xff1f; 基本概念 首先&#xff0c;我们…...

Linux——shell外壳程序

shell外壳程序 1. 什么是shell外壳程序 Linux严格意义上说的是一个操作系统&#xff0c;我们称之为“核心 “ &#xff0c;但我们一般用户&#xff0c;不能直接使用核心。 而是通过核心的“外壳”程序&#xff0c;也就是所谓的shell。 shell是所有外壳程序的统称 平时程序员…...

攻防世界web篇-Training-WWW-Robots

直接点击给出的地址&#xff0c;然后会转到另一个网页界面&#xff0c;在这个界面&#xff0c;已经给出了提示&#xff0c;robots.txt 在浏览器中&#xff0c;直接在地址的后面加上robots.txt&#xff0c;会进到下面这个界面 因为对php语言一窍不通&#xff0c;所以这里纯粹就…...

Docker是一个流行的容器化平台,用于构建、部署和运行应用程序。

文章目录 Web应用程序数据库服务器微服务应用开发环境持续集成和持续部署 (CI/CD)应用程序依赖项云原生应用程序研究和教育 &#x1f388;个人主页&#xff1a;程序员 小侯 &#x1f390;CSDN新晋作者 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 ✨收录专栏&#xff1a;…...

如何压缩ppt文件的大小?

如何压缩ppt文件的大小&#xff1f;要知道现在很多课件都是使用ppt文件&#xff0c;那么就导致ppt文件过大&#xff0c;我们很多时候电脑的存储空间就不够了。为了能够更好的存储这些ppt文件&#xff0c;我们通常会选择压缩ppt文件。怎么压缩ppt文件更快更好&#xff0c;没有损…...

8个视频剪辑素材网站,免费下载

找视频剪辑素材就上这8个网站&#xff0c;免费下载&#xff0c;可商用&#xff0c;赶紧收藏起来~ 免费视频素材 1、菜鸟图库 https://www.sucai999.com/video.html?vNTYxMjky 菜鸟图库网素材非常丰富&#xff0c;网站主要还是以设计类素材为主&#xff0c;高清视频素材也很多…...

常用的二十种设计模式(上)-C++

C中常用的设计模式有很多&#xff0c;设计模式是解决常见问题的经过验证的最佳实践。以下是一些常用的设计模式&#xff1a; 单例模式&#xff08;Singleton&#xff09;&#xff1a;确保一个类只有一个实例&#xff0c;并提供一个全局访问点。工厂模式&#xff08;Factory&am…...

JS中var和let和const的区别

在我很早之前&#xff0c;我还在用着var&#xff0c;直到接触到了let与const&#xff0c;我才知道var造成的影响很多&#xff0c;我果断的抛弃了var&#xff0c;哈哈 让我为大家介绍一下它们的区别吧&#xff01; 1.块级作用域 块作用域由 { }包括&#xff0c;let和const具有…...

如何利用IP定位技术进行反欺诈?

网络欺诈风险是指在互联网和数字领域中&#xff0c;存在各种类型的欺诈活动&#xff0c;旨在欺骗个人、组织或系统以获得非法获益。以下是一些常见的网络欺诈风险类型&#xff1a; 身份盗用&#xff1a;这是一种欺诈行为&#xff0c;涉及盗取他人的个人身份信息&#xff0c;如姓…...