当前位置: 首页 > news >正文

RK3568笔记四:基于TensorFlow花卉图像分类部署

若该文为原创文章,转载请注明原文出处。

基于正点原子的ATK-DLRK3568部署测试。

花卉图像分类任务,使用使用 tf.keras.Sequential 模型,简单构建模型,然后转换成 RKNN 模型部署到ATK-DLRK3568板子上。

在 PC 使用 Windows 系统安装 tensorflow,并创建虚拟环境进行训练,然后切换到VM下的RK3568环境,使用rknn-toolkit2把模型转成rknn模型部署到RK3568板子上测试。

一、介绍

       TensorFlow 是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库 DistBelief。

使用 tf.keras.Sequential 模型对花卉图像进行分类。

二、环境搭建

1、创建虚拟环境

 conda create -n tensorflow_env python=3.8 -y

2、激活环境

conda activate tensorflow_env

3、安装环境

pip install numpypip install tensorflowpip install pillow

三、训练

1、下载数据集

https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz

数据集不好下载,自行处理。

2、训练

tensorflow_classification.py

import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential# 获取
import pathlib
#dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
#data_dir = tf.keras.utils.get_file('flower_photos', origin=dataset_url, untar=True)
data_dir = './flower_photos'
data_dir = pathlib.Path(data_dir)batch_size = 32
img_height = 180
img_width = 180# 划分数据
train_ds = tf.keras.utils.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)val_ds = tf.keras.utils.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)class_names = train_ds.class_names
#print(class_names)# 处理数据
normalization_layer = layers.Rescaling(1./255)
train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
num_classes = len(class_names)data_augmentation = keras.Sequential([layers.RandomFlip("horizontal",input_shape=(img_height,img_width,3)),layers.RandomRotation(0.1),layers.RandomZoom(0.1),]
)model = Sequential([data_augmentation,layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(32, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(64, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Dropout(0.2),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dense(num_classes, name="outputs")
])model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])model.summary()# 训练模型
epochs=15
history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,
)# 测试模型
#sunflower_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/592px-Red_sunflower.jpg"
#sunflower_path = tf.keras.utils.get_file('Red_sunflower', origin=sunflower_url)
sunflower_path = './test_180.jpg'img = tf.keras.utils.load_img(sunflower_path, target_size=(img_height, img_width)
)
img_array = tf.keras.utils.img_to_array(img)
img_array = tf.expand_dims(img_array, 0) # Create a batchpredictions = model.predict(img_array)
score = tf.nn.softmax(predictions[0])print("This image most likely belongs to {} with a {:.2f} percent confidence.".format(class_names[np.argmax(score)], 100 * np.max(score))
)# Convert the model.
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()# Save the model.
with open('model.tflite', 'wb') as f:f.write(tflite_model)

代码有点需要注意,代码屏蔽了下载的功能,所以需要预先下载数据集,如果没有下载数据集,就需要把下载的代码开启。

#dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
#data_dir = tf.keras.utils.get_file('flower_photos', origin=dataset_url, untar=True)

执行下面命令开始训练:

python tensorflow_classification.py

等待一会,会生成model.tflite模型文件。

四、RKNN模型转换

转换代码通过下面代码:

rknn_transfer.py

import numpy as np
import cv2
from rknn.api import RKNN
import tensorflow as tfimg_height = 180
img_width = 180
IMG_PATH = 'test.jpg'
class_names = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']if __name__ == '__main__':# Create RKNN object#rknn = RKNN(verbose='Debug')rknn = RKNN()# Pre-process configprint('--> Config model')rknn.config(mean_values=[0, 0, 0], std_values=[255, 255, 255], target_platform='rk3568')print('done')# Load modelprint('--> Loading model')ret = rknn.load_tflite(model='model.tflite')if ret != 0:print('Load model failed!')exit(ret)print('done')# Build modelprint('--> Building model')ret = rknn.build(do_quantization=False)#ret = rknn.build(do_quantization=True,dataset='./dataset.txt')if ret != 0:print('Build model failed!')exit(ret)print('done')# Export rknn modelprint('--> Export rknn model')ret = rknn.export_rknn('./model.rknn')if ret != 0:print('Export rknn model failed!')exit(ret)print('done')#Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
#    if ret != 0:
#        print('Init runtime environment failed!')
#        exit(ret)
print('done')img = cv2.imread(IMG_PATH)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img,(180,180))
img = np.expand_dims(img, 0)#print('--> Accuracy analysis')
#rknn.accuracy_analysis(inputs=['./test.jpg'])
#print('done')print('--> Running model')
outputs = rknn.inference(inputs=[img])
print(outputs)
outputs = tf.nn.softmax(outputs)
print(outputs)print("This image most likely belongs to {} with a {:.2f} percent confidence.".format(class_names[np.argmax(outputs)], 100 * np.max(outputs))
)
#print("图像预测是:", class_names[np.argmax(outputs)])
print('--> done')rknn.release()

运行后会生成RKNN模型

五、部署

rknnlite_inference.py

import numpy as np
import cv2
from rknnlite.api import RKNNLiteIMG_PATH = 'test.jpg'
RKNN_MODEL = 'model.rknn'
img_height = 180
img_width = 180
class_names = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']# Create RKNN object
rknn_lite = RKNNLite()# load RKNN model
print('--> Load RKNN model')
ret = rknn_lite.load_rknn(RKNN_MODEL)
if ret != 0:print('Load RKNN model failed')exit(ret)
print('done')# Init runtime environment
print('--> Init runtime environment')
ret = rknn_lite.init_runtime()
if ret != 0:print('Init runtime environment failed!')exit(ret)
print('done')# load image
img = cv2.imread(IMG_PATH)
img = cv2.resize(img,(180,180))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.expand_dims(img, 0)# runing model
print('--> Running model')
outputs = rknn_lite.inference(inputs=[img])
print("result: ", outputs)
print("This image most likely belongs to {}.".format(class_names[np.argmax(outputs)])
)rknn_lite.release()

把上面的rknnlite_inference.py和图片拷贝到开发板上,终端运行即可。

如有侵权,或需要完整代码,请及时联系博主。

相关文章:

RK3568笔记四:基于TensorFlow花卉图像分类部署

若该文为原创文章,转载请注明原文出处。 基于正点原子的ATK-DLRK3568部署测试。 花卉图像分类任务,使用使用 tf.keras.Sequential 模型,简单构建模型,然后转换成 RKNN 模型部署到ATK-DLRK3568板子上。 在 PC 使用 Windows 系统…...

甄知科技张礼军:数智化转型助企业破茧成蝶!

数智化浪潮滚滚向前,正席卷各行各业,带领企业从数字化时代跨入数智化时代。可什么是数智化?如何实现数智化转型?已经成为横亘在无数企业面前的大难题! 事实上,数智化是数字化、AI和业务三个要素的交集&…...

Golang Map:高效的键值对容器

1. 引言 在编程中,我们经常需要使用键-值对来存储和操作数据。Golang中提供了一种高效的键值对容器——Map(映射),它提供了快速的查找和插入操作,是处理大量关联数据的理想选择。本文将介绍Golang中的Map,…...

2023年【电工(高级)】报名考试及电工(高级)模拟考试题

题库来源:安全生产模拟考试一点通公众号小程序 2023年【电工(高级)】报名考试及电工(高级)模拟考试题,包含电工(高级)报名考试答案和解析及电工(高级)模拟考…...

伊朗相关的OilRig组织在为期8个月的网络攻击中针对中东政府

导语 伊朗相关的OilRig组织最近在中东政府中展开了一场长达8个月的网络攻击行动。这次攻击导致了文件和密码的被窃取,并且在其中一次攻击中,攻击者还使用了一种名为PowerExchange的PowerShell后门。据Symantec的威胁猎人团队称,他们在一份与T…...

服务器数据恢复-linux+raid+VMwave ESX数据恢复案例

服务器数据恢复环境: 一台某品牌x3950 X6型号服务器,linux操作系统,12块硬盘组建了一组raid阵列,上层运行VMwave ESX虚拟化平台。 服务器故障: 在服务器运行过程中,该raid阵列中有硬盘掉线,linu…...

残疾人求助报警器

残疾人求助报警器 实际上,求助报警对残疾人来说并不是一件容易的事情。首先,由于身体上的缺陷,他们在描述事件经过和罪犯体征时往往存在困难。此外,一些残疾人可能因为自卑或担心被歧视而犹豫不决,甚至选择忍气吞声。…...

【Datawhale】扩散模型学习笔记 第一次打卡

文章目录 扩散模型学习笔记1. 扩散模型库Diffusers1.1 安装1.2 使用 2. 从零开始搭建扩散模型2.1 数据准备2.2 损坏过程2.3 模型构建2.4 模型训练2.5 采样 3. webui 扩散模型学习笔记 1. 扩散模型库Diffusers 1.1 安装 由于diffusers库更新较快,所以建议时常upgr…...

Spring Boot学习笔记

SpringBoot特征 特征 创建独立的 Spring 应用程序 直接嵌入 Tomcat、Jetty 或 Undertow(无需部署 WAR 文件) 提供“入门”依赖项以简化构建配置 尽可能自动配置 Spring 和 第三方库 提供生产就绪功能,例如指标、健康检查和外部化配置 完…...

图像边缘检测--(Sobel、Laplacian、Canny)

1、图像中各种形状的检测是计算机视觉领域中非常常见的技术之一,特别是图像中直线的检测,圆的检测,图像边缘的检测等,下面将介绍如何快速检测图像边缘。 2、边缘是不同区域的分界线,是周围(局部)像素有显著变化的像素的集合,有幅值与方向两个属性。这个不是绝对的定义,…...

【计算机网络笔记】计算机网络性能(2)——时延带宽积、丢包率、吞吐量/率

系列文章目录 什么是计算机网络? 什么是网络协议? 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能(1)——速率、带宽、延迟 系列文章目录时延带宽积丢包率吞吐量/率&am…...

自学(黑客技术)——网络安全高效学习方法

前言 前几天发布了一篇 网络安全(黑客)自学 没想到收到了许多人的私信想要学习网安黑客技术!却不知道从哪里开始学起!怎么学?如何学? 今天给大家分享一下,很多人上来就说想学习黑客&#xff0c…...

【Linux】进程概念与进程状态

文章目录 一、进程概念1.进程的概念2.进程的描述-PCB 二、进程相关的基本操作1.组织进程2.查看进程3.结束进程4.通过系统调用获取进程标示符5.通过系统调用创建进程-fork初识 三、进程状态1.普遍操作系统层面的进程状态2.Linux操作系统的进程状态 四、两种特殊的进程状态1.僵尸…...

解决安装nvm以后windows cmd无法找到npm/yarn命令的问题

安装了nodejs多版本管理工具nvm以后,会出现windows cmd无法找到npm/yarn命令的问题 只要一运行npm/yarn就会提示:不是内部命令,找不到运行路径之类的。 解决办法:首先打开windows环境变量的配置,查看NVM_SYMLINK指向…...

深入解析Java正则表达式:定义、原理和实例

1.前言 1.1简介 正则表达式在Java开发中扮演着重要的角色。本文将详细讲解Java正则表达式的定义、工作原理,并提供一些实例和示例代码,帮助读者更好地理解和应用正则表达式 1.2使用场景的介绍 正则表达式适用于许多问题和场景,包括但不限于…...

DatenLord前沿技术分享 No.38

达坦科技专注于打造新一代开源跨云存储平台DatenLord,通过软硬件深度融合的方式打通云云壁垒,致力于解决多云架构、多数据中心场景下异构存储、数据统一管理需求等问题,以满足不同行业客户对海量数据跨云、跨数据中心高性能访问的需求。在本周…...

ms-sql server sql 把逗号分隔的字符串分开

案例: sql 查询-字段里是逗号,分隔开的数组,查询匹配数据 sql 查询-字段里是逗号,分隔开的数组,查询匹配数据_sql server 数组匹配-CSDN博客 SQL SERVER 把逗号隔开的字符串拆分成行 SQL SERVER 把逗号隔开的字符串拆分成行_sqlserver拆分…...

零基础制作预约小程序,微信小程序预约服务指南

随着互联网的发展,越来越多的服务开始转移到线上。预约服务也是其中之一。通过微信小程序,商家可以提供更加便捷的预约服务,让客户随时随地预约商品或服务。本文将介绍如何零基础制作预约小程序,包括使用第三方制作平台、选择合适…...

算法---交替合并字符串

题目 给你两个字符串 word1 和 word2 。请你从 word1 开始,通过交替添加字母来合并字符串。如果一个字符串比另一个字符串长,就将多出来的字母追加到合并后字符串的末尾。 返回 合并后的字符串 。 示例 1: 输入:word1 “abc”…...

下载运行ps软件提示因为计算机中丢失d3dcompiler_47.dll解决方法

在计算机系统中,DLL文件(动态链接库)是一种重要的共享库,它包含了可被多个程序使用的代码和数据。然而,当某些DLL文件丢失或损坏时,可能会导致程序无法正常运行。本文将介绍四种解决D3DCompiler_47.dll缺失…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

【JavaEE】-- HTTP

1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...

C++实现分布式网络通信框架RPC(2)——rpc发布端

有了上篇文章的项目的基本知识的了解,现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系,可直观判断线性相关、非线性相关或无相关关系,点的分布密…...