当前位置: 首页 > news >正文

机器学习tip:sklearn中的pipeline

文章目录

  • 1 加载数据集
  • 2 构思算法的流程
  • 3 Pipeline执行流程的分析
  • Reference
  • Statement

一个典型的机器学习构建包含若干个过程

  1. 源数据ETL
  2. 数据预处理
  3. 特征选取
  4. 模型训练与验证

一个典型的机器学习构建包含若干个过程

以上四个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果。因此,对以上多个步骤、进行抽象建模,简化为流水线式工作流程则存在着可行性,对利用spark进行机器学习的用户来说,流水线式机器学习比单个步骤独立建模更加高效、易用。

管道机制在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用。

管道机制实现了对全部步骤的流式化封装和管理(streaming workflows with pipelines)。注意:管道机制更像是编程技巧的创新,而非算法的创新。

接下来我们以一个具体的例子来演示sklearn库中强大的Pipeline用法:

1 加载数据集

import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelEncoderdf = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/''breast-cancer-wisconsin/wdbc.data', header=None)# Breast Cancer Wisconsin datasetX, y = df.values[:, 2:], df.values[:, 1]# y为字符型标签# 使用LabelEncoder类将其转换为0开始的数值型
encoder = LabelEncoder()
y = encoder.fit_transform(y)>>> encoder.transform(['M', 'B'])array([1, 0])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=0)

2 构思算法的流程

可放在Pipeline中的步骤可能有:

  • 特征标准化是需要的,可作为第一个环节
  • 既然是分类器,classifier也是少不了的,自然是最后一个环节
  • 中间可加上比如数据降维(PCA)
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegressionfrom sklearn.pipeline import Pipelinepipe_lr = Pipeline([('sc', StandardScaler()),('pca', PCA(n_components=2)),('clf', LogisticRegression(random_state=1))])
pipe_lr.fit(X_train, y_train)
print('Test accuracy: %.3f' % pipe_lr.score(X_test, y_test))# Test accuracy: 0.947

Pipeline对象接受二元tuple构成的list,每一个二元 tuple 中的第一个元素为 arbitrary identifier string,我们用以获取(access)Pipeline object 中的 individual elements,二元 tuple 中的第二个元素是 scikit-learn与之相适配的transformer 或者 estimator。

Pipeline([('sc', StandardScaler()), ('pca', PCA(n_components=2)), ('clf', LogisticRegression(random_state=1))])

3 Pipeline执行流程的分析

Pipeline 的中间过程由scikit-learn相适配的转换器(transformer)构成,最后一步是一个estimator。比如上述的代码,StandardScaler和PCA transformer 构成intermediate steps,LogisticRegression 作为最终的estimator

当我们执行 pipe_lr.fit(X_train, y_train)时,首先由StandardScaler在训练集上执行 fit 和 transform 方法,transformed后的数据又被传递给Pipeline对象的下一步,也即PCA()。和StandardScaler一样,PCA也是执行 fit 和 transform 方法,最终将转换后的数据传递给 LosigsticRegression。整个流程如下图所示:

在这里插入图片描述

Reference

https://blog.csdn.net/lanchunhui/article/details/50521648

Statement

本文未经系统测试和专业评审,欢迎在评论区反馈和讨论问题。

相关文章:

机器学习tip:sklearn中的pipeline

文章目录 1 加载数据集2 构思算法的流程3 Pipeline执行流程的分析ReferenceStatement 一个典型的机器学习构建包含若干个过程 源数据ETL数据预处理特征选取模型训练与验证 一个典型的机器学习构建包含若干个过程 以上四个步骤可以抽象为一个包括多个步骤的流水线式工作&…...

Jmeter项目实战

一,性能测试流程 性能需求分析 性能方案设计 业务建模 脚本优化 执行测试 收集性能数据 结果分析 性能测试报告 二,性能需求分析 项目管理系统业务:登录 注册 搜索(一般最核心的就是登陆,大多只对登录做压测&a…...

Spring学习笔记注解式开发(3)

Spring学习笔记(3) 一、Bean的注解式开发1.1、注解开发的基本和Component1.2 注解式开发8.3、Component的三个衍生注解 二、Bean依赖注入注解开发2.1、依赖注入相关注解2.2、Autowired扩展 三、非自定义Bean注解开发四、Bean配置类的注解开发五、Spring注…...

vue3后台管理框架之技术栈

vue3全家桶技术 基础构建: vue3vite4TypeScript 代码格式 : eslintprettystylelint git生命周期钩子: husky css预处理器: sass ui库: element-plus 模拟数据: mock 网络请求: axios 路由: vue…...

7、Linux驱动开发:设备-自动创建设备节点

目录 🍅点击这里查看所有博文 随着自己工作的进行,接触到的技术栈也越来越多。给我一个很直观的感受就是,某一项技术/经验在刚开始接触的时候都记得很清楚。往往过了几个月都会忘记的差不多了,只有经常会用到的东西才有可能真正记…...

用Python解析HTML页面

用Python解析HTML页面 文章目录 用Python解析HTML页面HTML 页面的结构XPath 解析CSS 选择器解析简单的总结 在前面的课程中,我们讲到了使用 request三方库获取网络资源,还介绍了一些前端的基础知识。接下来,我们继续探索如何解析 HTML 代码&…...

官方认证:研发效能(DevOps)工程师职业技术认证

培养端到端的研发效能人才 为贯彻落实《关于深化人才发展体制机制改革的意见》,推动实施人才强国战略,促进专业技术人员提升职业素养、补充新知识新技能,实现人力资源深度开发,推动经济社会全面发展,根据《中华人民共…...

搭建GPFS双机集群

1.环境说明: 系统主机名IP地址内存添加共享磁盘大小Centos7.9gpfs1192.168.10.1012G20GCentos7.9gpfs2192.168.10.1022G20G 2.环境配置: 配置网路IP地址: 修改网卡会话: nmcli connection modify ipv4.method manual ipv4.addre…...

【试题032】C语言关系运算符例题

1.题目:设int a2,b4,c5;,则表达式ab!c>b>a的值为? 2.代码分析: //设int a2,b4,c5;,则表达式ab!c>b>a的值为?int a 2, b 4, c 5;printf("%d\n", (a b ! c > b > a));//分析&#xff…...

系列四、FileReader和FileWriter

一、概述 FileReader 和 FileWriter 是字符流,按照字符来操作IO。 1.1、继承体系 二、FileReader常用方法 new FileReader(File/String)# 每次读取单个字符就返回,如果读取到文件末尾返回-1 read()# 批量读取多个字符到数组,返回读取的字节…...

【C++面向对象】2.构造函数、析构函数

文章目录 【 1. 构造函数 】1.1 带参构造函数--传入数据1.2 无参构造函数--不传入数据1.3 实例1.4 拷贝构造函数 【 2. 析构函数 】 【 1. 构造函数 】 类的构造函数是类的一种特殊的成员函数,它会 在每次创建类的新对象时执行。 构造函数的名称与类的名称是完全相同…...

uniapp:使用subNVue原生子窗体在map上层添加自定义组件

我们想要在地图上层添加自定义组件,比如一个数据提示框,点一下会展开,再点一下收起,在h5段显示正常,但是到app端真机测试发现组件显示不出来,这是因为map是内置原生组件,层级最高,自…...

Flutter开发GridView控件详解

GridView跟ListView很类似,Listview主要以列表形式显示数据,GridView则是以网格形式显示数据,掌握ListView使用方法后,会很轻松的掌握GridView的使用方法。 在某种界面设计中,如果需要很多个类似的控件整齐的排列&…...

Vue3.0里为什么要用 Proxy API 替代 defineProperty API ?

一、Object.defineProperty 定义:Object.defineProperty() 方法会直接在一个对象上定义一个新属性,或者修改一个对象的现有属性,并返回此对象 为什么能实现响应式 通过defineProperty 两个属性,get及set get 属性的 getter 函…...

pytest利用request fixture实现个性化测试需求详解

这篇文章主要为大家详细介绍了pytest如何利用request fixture实现个性化测试需求,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起了解一下− 前言 在深入理解 pytest-repeat 插件的工作原理这篇文章中,我们看到pytest_repeat源码中有这样一段 import pyt…...

算法练习16——O(1) 时间插入、删除和获取随机元素

LeetCode 380 O(1) 时间插入、删除和获取随机元素 实现RandomizedSet 类: RandomizedSet() 初始化 RandomizedSet 对象 bool insert(int val) 当元素 val 不存在时,向集合中插入该项,并返回 true ;否则,返回 false 。 …...

实时数据更新与Apollo:探索GraphQL订阅

前言 「作者主页」:雪碧有白泡泡 「个人网站」:雪碧的个人网站 「推荐专栏」: ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄,vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…...

VMware Workstation里面安装ubuntu20.04的流程

文章目录 前言一、获取 desktop ubuntu20.04 安装镜像二、VMware Workstation下安装ubuntu20.041. VMware Workstation 创建一个新的虚拟机2. ubuntu20.04的安装过程3. 登录ubuntu20.044. 移除 ubuntu20.04 安装镜像总结参考资料前言 本文主要介绍如何在PC上的虚拟机(VMware W…...

pnpm的环境安装以及安装成功后无法使用的问题

文章目录 前言1、使用npm 安装2、安装后的注意点3、遇到问题4、配置path的环境变量(1)找到环境变量(2)找到并双击path的系统变量(3)复制第1步中使用npm安装的红框部分的路径(4)将第&…...

华为eNSP配置专题-浮动路由及BFD的配置

文章目录 华为eNSP配置专题-浮动路由及BFD的配置0、参考文档1、前置环境1.1、宿主机1.2、eNSP模拟器 2、基本环境搭建2.1、基本终端构成和连接2.2、基本终端配置 3、浮动路由配置3.1、浮动路由的基本配置3.2、浮动路由的负载均衡问题3.3、浮动路由的优先级调整 4、BFD的配置4.1…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...