当前位置: 首页 > news >正文

C++前缀和算法的应用:从仓库到码头运输箱子原理、源码、测试用例

本文涉及的基础知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
双指针
单调双向队列

题目

你有一辆货运卡车,你需要用这一辆车把一些箱子从仓库运送到码头。这辆卡车每次运输有 箱子数目的限制 和 总重量的限制 。
给你一个箱子数组 boxes 和三个整数 portsCount, maxBoxes 和 maxWeight ,其中 boxes[i] = [ports​​i​, weighti] 。
ports​​i 表示第 i 个箱子需要送达的码头, weightsi 是第 i 个箱子的重量。
portsCount 是码头的数目。
maxBoxes 和 maxWeight 分别是卡车每趟运输箱子数目和重量的限制。
箱子需要按照 数组顺序 运输,同时每次运输需要遵循以下步骤:
卡车从 boxes 队列中按顺序取出若干个箱子,但不能违反 maxBoxes 和 maxWeight 限制。
对于在卡车上的箱子,我们需要 按顺序 处理它们,卡车会通过 一趟行程 将最前面的箱子送到目的地码头并卸货。如果卡车已经在对应的码头,那么不需要 额外行程 ,箱子也会立马被卸货。
卡车上所有箱子都被卸货后,卡车需要 一趟行程 回到仓库,从箱子队列里再取出一些箱子。
卡车在将所有箱子运输并卸货后,最后必须回到仓库。
请你返回将所有箱子送到相应码头的 最少行程 次数。
示例 1:
输入:boxes = [[1,1],[2,1],[1,1]], portsCount = 2, maxBoxes = 3, maxWeight = 3
输出:4
解释:最优策略如下:

  • 卡车将所有箱子装上车,到达码头 1 ,然后去码头 2 ,然后再回到码头 1 ,最后回到仓库,总共需要 4 趟行程。
    所以总行程数为 4 。
    注意到第一个和第三个箱子不能同时被卸货,因为箱子需要按顺序处理(也就是第二个箱子需要先被送到码头 2 ,然后才能处理第三个箱子)。
    示例 2:
    输入:boxes = [[1,2],[3,3],[3,1],[3,1],[2,4]], portsCount = 3, maxBoxes = 3, maxWeight = 6
    输出:6
    解释:最优策略如下:
  • 卡车首先运输第一个箱子,到达码头 1 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第二、第三、第四个箱子,到达码头 3 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第五个箱子,到达码头 2 ,回到仓库,总共 2 趟行程。
    总行程数为 2 + 2 + 2 = 6 。
    示例 3:
    输入:boxes = [[1,4],[1,2],[2,1],[2,1],[3,2],[3,4]], portsCount = 3, maxBoxes = 6, maxWeight = 7
    输出:6
    解释:最优策略如下:
  • 卡车运输第一和第二个箱子,到达码头 1 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第三和第四个箱子,到达码头 2 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第五和第六个箱子,到达码头 3 ,然后回到仓库,总共 2 趟行程。
    总行程数为 2 + 2 + 2 = 6 。
    示例 4:
    输入:boxes = [[2,4],[2,5],[3,1],[3,2],[3,7],[3,1],[4,4],[1,3],[5,2]], portsCount = 5, maxBoxes = 5, maxWeight = 7
    输出:14
    解释:最优策略如下:
  • 卡车运输第一个箱子,到达码头 2 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第二个箱子,到达码头 2 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第三和第四个箱子,到达码头 3 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第五个箱子,到达码头 3 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第六和第七个箱子,到达码头 3 ,然后去码头 4 ,然后回到仓库,总共 3 趟行程。
  • 卡车运输第八和第九个箱子,到达码头 1 ,然后去码头 5 ,然后回到仓库,总共 3 趟行程。
    总行程数为 2 + 2 + 2 + 2 + 3 + 3 = 14 。

提示:
1 <= boxes.length <= 105
1 <= portsCount, maxBoxes, maxWeight <= 105
1 <= ports​​i <= portsCount
1 <= weightsi <= maxWeight

可理解行强的解法

如果有多种运输的boxs[0,i)的方式,只需要保留行程最少的方式,且只需要记录最小行程,此值用m_vRet[i]记录。分成两步:第一步,运输box[0,j),第二步运输[j,i)。一次可以运输完成,可以看成第一步是box[0,0)。枚举i,j的时间复杂度都是O(n),总时间复杂度是O(n*n)。

利用前缀和计算[j,i)的箱子总重量

vWeightSum[i],记录了boxs[0,i)的重中立,vWeightSum[i]-vWeightSum[j]。

利用前缀和计算[i,j)需要单独下车的次数

vDownSum[i]记录[0,i)需要单独下车的次数。vDown[j]-vDownSum[i]。和前面的箱子不同,则需要单独下车。

优化枚举

m_vRet[i] = min(…,X) X=m_vRet[j]+1 + 1 + vDown[j+1,i)。 1+1 表示返程和下第一箱子,从第二个箱子起要计算要单独下。X = m_vRet[j]+1+1+vDown[i] - vDown[j+1] ,令 Y= m_vRet[j]-vDow[j+1],则X=Y + 2 + vDown[i] ,显然Y可以提前计算。每次处理完i,将Y记录到setPre中。setPre对应的索引为[left,i),如果[left,i)超量或超重,则left++,并更新setPre。

时间复杂度

枚举i,时间复杂度。二分查找setPre,时间复杂度O(logn),总时间复杂度O(nlogn)。

核心代码

class Solution {
public:
int boxDelivering(vector<vector>& boxes, int portsCount, int maxBoxes, int maxWeight) {
m_c = boxes.size();
m_vRet.resize(m_c+1);//记录boxes[0,i) 需的最小行程数
vector vWeightSum = { 0 };//箱子重量前缀和
for (const auto& v : boxes)
{
vWeightSum.emplace_back(v[1] + vWeightSum.back());
}
vector vDownSum = { 0,0 };//假定不是本车的第一个箱子,卸货需要的次数
for (int i = 1; i < m_c; i++)
{
vDownSum.emplace_back(vDownSum.back() + (boxes[i][0] != boxes[i-1][0]));
}
std::multiset setPre = { 0 }; //记录可以作为前一趟的最小行程数-vDownSum[i + 1]
int left = 0;//[left,i)是上一趟的行程
for (int i = 1; i <= m_c; i++)
{
// [left,i)为空,不会超重,也不会超量。所以无需判断是否为空
while ((i - left > maxBoxes) || (vWeightSum[i] - vWeightSum[left] > maxWeight))
{
//如果[left,i)超重或超亮
const int tmp = m_vRet[left ] - vDownSum[left+1 ];
setPre.erase(setPre.find(tmp));
left++;
}
m_vRet[i ] = *setPre.begin() + 2 + vDownSum[i] ;
if (i + 1 <= m_c)
{
setPre.emplace(m_vRet[i] - vDownSum[i + 1]);
}
}
return m_vRet.back();
}
int m_c;
vector m_vRet;
};

测试用例

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
assert(v1[i] == v2[i]);
}
}

template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}

int main()
{
vector<vector> boxes = { {1,1},{2,1},{1,1} };
int portsCount = 2, maxBoxes = 3, maxWeight = 3;
auto res = Solution().boxDelivering(boxes, portsCount, maxBoxes, maxWeight);
Assert(4, res);
boxes = { {1,2},{3,3},{3,1},{3,1},{2,4} };
portsCount = 3, maxBoxes = 3, maxWeight =6;
res = Solution().boxDelivering(boxes, portsCount, maxBoxes, maxWeight);
Assert(6, res);
boxes = { {2,4},{2,5},{3,1},{3,2},{3,7},{3,1},{4,4},{1,3},{5,2} };
portsCount = 5, maxBoxes = 5, maxWeight = 7;
res = Solution().boxDelivering(boxes, portsCount, maxBoxes, maxWeight);
Assert(14, res);

//CConsole::Out(res);

}

优化二:单调双向队列

原理

setPre的旧值如果大于等于新值,则被淘汰了。这意味着值是按升序排序的。移除值有两种原因:一,旧值比新值大,被淘汰。从容器尾淘汰。二,旧值超重或超过数量了,从容器头淘汰。所以用双向队列。

代码

class Solution {
public:
int boxDelivering(vector<vector>& boxes, int portsCount, int maxBoxes, int maxWeight) {
m_c = boxes.size();
m_vRet.resize(m_c+1);//记录boxes[0,i) 需的最小行程数
vector vWeightSum = { 0 };//箱子重量前缀和
for (const auto& v : boxes)
{
vWeightSum.emplace_back(v[1] + vWeightSum.back());
}
vector vDownSum = { 0,0 };//假定不是本车的第一个箱子,卸货需要的次数
for (int i = 1; i < m_c; i++)
{
vDownSum.emplace_back(vDownSum.back() + (boxes[i][0] != boxes[i-1][0]));
}
std::deque<pair<int, int>> mSumJ = { { 0,0} };
for (int i = 1; i <= m_c; i++)
{
// [left,i)为空,不会超重,也不会超量。所以无需判断是否为空
while (mSumJ.size() &&((i - mSumJ.front().second > maxBoxes) || (vWeightSum[i] - vWeightSum[mSumJ.front().second] > maxWeight)))
{
//如果[left,i)超重或超亮
mSumJ.pop_front();
}
m_vRet[i ] = mSumJ.front().first + 2 + vDownSum[i] ;
if (i + 1 > m_c)
{
continue;
}
const int iNew = m_vRet[i] - vDownSum[i + 1];
while (mSumJ.size() && (mSumJ.back().first >= iNew))
{
mSumJ.pop_back();
}
mSumJ.emplace_back(iNew, i);
}
return m_vRet.back();
}
int m_c;
vector m_vRet;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

鄙人想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
墨家名称的来源:有所得以墨记之。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境:

VS2022 C++17

相关文章:

C++前缀和算法的应用:从仓库到码头运输箱子原理、源码、测试用例

本文涉及的基础知识点 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 双指针 单调双向队列 题目 你有一辆货运卡车&#xff0c;你需要用这一辆车把一些箱子从仓库运送到码头。这辆卡车每次运输有 箱子数目的限制 和 总重量的限制 。 给你…...

【面试HOT100】链表树

系列综述&#xff1a; &#x1f49e;目的&#xff1a;本系列是个人整理为了秋招面试的&#xff0c;整理期间苛求每个知识点&#xff0c;平衡理解简易度与深入程度。 &#x1f970;来源&#xff1a;材料主要源于LeetCodeHot100进行的&#xff0c;每个知识点的修正和深入主要参考…...

了解 Elasticsearch 自动生成的文档 _id:重复是一个问题吗?

Elasticsearch 中自动生成的文档 ID 当你在未指定 ID 的情况下对文档建立索引时&#xff0c;Elasticsearch 会自动为该文档生成唯一的 ID。 该 ID 是 Base64 编码的 UUID&#xff0c;由多个部分组成&#xff0c;每个部分都有特定的用途。 ID 生成过程针对索引速度和存储效率进…...

量子信息处理器可能能够提供高度压缩的生成对抗学习任务的版本

量子信息处理在生成对抗学习任务中的应用可能性&#xff0c;以及量子信息处理器在表示高维向量和执行线性代数运算上的优势。 举个例子 假设底层数据由M个在N维实数或复数空间中的归一化向量~vj组成&#xff0c;使得数据的&#xff08;归一化&#xff09;协方差矩阵为C (1/M…...

linux-守护进程daemon

linux-守护进程daemon 代码实现 main.c运行结果 代码实现 main.c //pName&#xff1a;程序名 //facility&#xff1a; 守护进程&#xff0c;输出日志类型 302页 #include<signal.h> #include<syslog.h> #include<fcntl.h> static int daemon_proc 0; #defin…...

Kafka Tool(Kafka 可视化工具)安装及使用教程

Kafka Tool&#xff08;Kafka 可视化工具&#xff09;安装及使用教程 Kafka Tool 工具下载 下载地址 http://www.kafkatool.com/download.html 下载界面 不同版本的Kafka对应不同版本的工具&#xff0c;个人使用的是2.11&#xff0c;所以下载的是最新的2.0.8版本&#xff…...

【大揭秘】美团面试题:ConcurrentHashMap和Hashtable有什么区别?一文解析!

正文 亲爱的小伙伴们&#xff0c;大家好&#xff01;我是小米&#xff0c;一个热爱技术分享的程序员&#xff0c;今天我为大家带来了一篇有关美团面试题的热门话题&#xff1a;ConcurrentHashMap 和 Hashtable 有什么区别。这个问题在Java面试中常常被拿来考察对多线程编程的理…...

爬虫基础 JS逆向

爬虫核心 1. HTTP协议与WEB开发 1. 什么是请求头请求体&#xff0c;响应头响应体 2. URL地址包括什么 3. get请求和post请求到底是什么 4. Content-Type是什么 &#xff08;1&#xff09;简介 HTTP协议是Hyper Text Transfer Protocol&#xff08;超文本传输协议&#xff09;…...

nextTick实现原理

答题思路&#xff1a; 此题实际考查vue异步更新策略说出vue是怎么通过异步、批量的方式更新以提高性能的最后把源码中实现说一下 回答范例&#xff1a; vue有个批量、异步更新策略&#xff0c;数据变化时&#xff0c;vue开启一个队列&#xff0c;并缓冲在同一事件循环中发生的…...

CentOS 7中安装ZooKeeper

文章目录 下载解压安装环境变量配置文件启动设置开机自启动开放端口 CentOS 7.6 ZooKeeper 3.5.7 本文介绍了如何在CentOS 7系统中安装单机版的ZooKeeper。 下载 点击官网下载 解压安装 # 解压 tar -xzvf apache-zookeeper-3.5.7-bin.tar.gz sudo mv apache-zookeeper-3.5.…...

推荐《幽游白书》

《幽游白书》是日本漫画家富坚义博于1990年12月3日—1994年7月25日于集英社旗下杂志《周刊少年Jump》上连载的少年漫画作品&#xff0c;全175话&#xff08;含外传一话&#xff09;。现时发行的单行本共计19册&#xff0c;电子版由漫番漫画、哔哩哔哩漫画发布 [1-2] 。 本作最…...

Linux MMC子系统 - 1.eMMC简介

By: Ailson Jack Date: 2023.10.21 个人博客&#xff1a;http://www.only2fire.com/ 本文在我博客的地址是&#xff1a;http://www.only2fire.com/archives/160.html&#xff0c;排版更好&#xff0c;便于学习&#xff0c;也可以去我博客逛逛&#xff0c;兴许有你想要的内容呢。…...

聊聊Android线程优化这件事

一、背景 在日常开发APP的过程中&#xff0c;难免需要使用第二方库和第三方库来帮助开发者快速实现一些功能&#xff0c;提高开发效率。但是&#xff0c;这些库也可能会给线程带来一定的压力&#xff0c;主要表现在以下几个方面&#xff1a; 线程数量增多&#xff1a;一些库可…...

Linux性能优化--实用工具:性能工具助手

8.0 概述 本章介绍一些在Linux系统上可用的实用程序&#xff0c;它们能够加强性能工具的有效性和可用性。实用工具本身不是性能工具&#xff0c;但是当它们与性能工具一起使用时&#xff0c;它们可以帮助完成如下功能&#xff1a;自动执行繁琐的任务、分析性能统计数据&#x…...

[PyTorch]即插即用的热力图生成

先上张效果图&#xff0c;本来打算移植霹雳老师的使用Pytorch实现Grad-CAM并绘制热力图。但是看了下代码&#xff0c;需要骨干网络按照标准写法&#xff08;即将特征层封装为features数组&#xff09;&#xff0c;而我写的网络图省事并没有进行封装&#xff0c;改造网络的代价又…...

golang笔记18--go并发多线程

golang笔记18--go并发多线程 介绍核心用法MutexRWMutexWaitGroupCondOncemapPoolContextselect 注意事项参考文档 介绍 大家都知道go语言近年来越来越火了&#xff0c;其中有一个要点是go语言在并发场景有很高的性能&#xff0c;比如可以通过启动很多个 goroutine 来执行并发任…...

使用OkHttp和Java来下载

以下是一个使用OkHttp和Java来下载内容的下载器程序&#xff0c;同时使用了jshk.com.cn/get_proxy来获取代理服务器。请注意&#xff0c;为了简化代码&#xff0c;我们将忽略一些异常处理和安全性检查。 import java.io.File;import java.io.FileOutputStream;import java.io.I…...

HttpServlet源码分析及HttpServletRequest接口

2023.10.20 HttpServlet HttpServlet类是专门为HTTP协议准备的。比GenericServlet更加适合HTTP协议下的开发。 http包下都有哪些类和接口呢&#xff1f;&#xff08;jakarta.servlet.http.*&#xff09; jakarta.servlet.http.HttpServlet &#xff08;HTTP协议专用的Servlet…...

CENTOS 7基于ISO文件进行安装新软件

众所周知&#xff0c;YUM是CENTOS7的安装程序。 普通情况下&#xff0c;连网之后 &#xff0c;用yum install 就可以安装。 但当网络环境经常出现连接失败的情况&#xff0c;默认情况下的行为就走不通了。 为解决这个问题&#xff0c;可以考虑如下三个方案 方案一&#xff1a;Y…...

模拟器-雷电-使用adb push或adb pull操作文件

一、环境 windows 10 雷电模拟器4.0.83 二、问题 有时候我们会需要往模拟器拷贝文件或者复制文件到我的电脑 三、方法 1、获取root权限 adb root adb remount 有可能遇到【daemon not running; starting now at tcp:5037】的报错 查看端口占用进程&#xff1a;netstat -…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...