基于深度学习网络的蔬菜水果种类识别算法matlab仿真
目录
1.算法运行效果图预览
2.算法运行软件版本
3.部分核心程序
4.算法理论概述
4.1数据集准备
4.2构建深度学习模型
4.3模型训练
4.4模型评估
5.算法完整程序工程
1.算法运行效果图预览
2.算法运行软件版本
matlab2022a
3.部分核心程序
clc;
clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')load gnet.mat[Predicted_Label, Probability] = classify(net, Validation_Dataset);
accuracy = mean(Predicted_Label == Validation_Dataset.Labels);index = randperm(numel(Validation_Dataset.Files), 16);
figurefor i = 1:16subplot(4,4,i)I = readimage(Validation_Dataset, index(i));imshow(I)label = Predicted_Label(index(i));title(string(label) + ", " + num2str(100*max(Probability(index(i), :)), 3) + "%");
end[Predicted_Label, Probability] = classify(net, Testing_Dataset);
accuracy = mean(Predicted_Label == Testing_Dataset.Labels);index = randperm(numel(Testing_Dataset.Files), 16);
figurefor i = 1:16subplot(4,4,i)I = readimage(Testing_Dataset, index(i));imshow(I)label = Predicted_Label(index(i));title(string(label) + ", " + num2str(100*max(Probability(index(i), :)), 3) + "%");
end
76
4.算法理论概述
蔬菜水果种类识别算法基于深度学习网络,通过训练模型来识别图像中的蔬菜和水果种类。其原理主要利用深度卷积神经网络(Deep Convolutional Neural Network, CNN)对图像进行特征提取和分类。
4.1数据集准备
首先,我们需要准备一个包含多种蔬菜和水果图像的数据集。这个数据集需要包含足够多的样本,以便模型能够学习到不同种类蔬菜和水果的特征。数据集需要分为训练集和测试集,训练集用于训练模型,测试集用于评估模型的性能。
本课题我们采用的数据库如下:
4.2构建深度学习模型
接下来,我们需要构建一个深度学习模型,用于对图像进行分类。卷积神经网络(Convolutional Neural Network, CNN)是一种常用的图像分类模型,它可以从原始图像中自动学习到有用的特征表示。一个典型的CNN模型包括多个卷积层、池化层和全连接层。通过堆叠多个卷积层和池化层,可以逐渐提取图像中的高级特征。最后,通过全连接层将提取到的特征映射到具体的类别上。
在本课题中,我们采用的网络模型为googlenet。
4.3模型训练
在构建好模型后,我们需要使用训练集对模型进行训练。训练过程中,我们需要定义损失函数(如交叉熵损失函数)来衡量模型的预测结果与实际标签之间的差距。同时,我们需要选择一种优化算法(如随机梯度下降算法)来不断调整模型的参数,使得损失函数的值尽可能小。
4.4模型评估
训练完成后,我们需要使用测试集对模型的性能进行评估。评估指标可以包括准确率、召回率、F1分数等。通过评估模型的性能,我们可以了解模型在识别蔬菜和水果种类方面的表现。
以下是一个简单的卷积神经网络模型的数学公式示例:
假设我们的模型包含两个卷积层、两个池化层和两个全连接层。对于给定的输入图像X,其输出类别Y可以通过以下公式计算:
Y=f(W2⋅g(W1⋅X+b1)+b2)
其中,W1和W2分别表示第一层和第二层卷积层的权重参数,b1和b2分别表示第一层和第二层卷积层的偏置参数,g()表示激活函数(如ReLU函数),f()表示softmax函数,用于将模型的输出映射到具体的类别上。
以上是一个简单的基于深度学习网络的蔬菜水果种类识别算法的原理和数学公式示例。在实际应用中,我们可以使用更加复杂的模型和训练技巧来提高模型的性能。
5.算法完整程序工程
OOOOO
OOO
O
相关文章:

基于深度学习网络的蔬菜水果种类识别算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1数据集准备 4.2构建深度学习模型 4.3模型训练 4.4模型评估 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 clc; clear; close all; wa…...

UE4 距离场
在项目设置的渲染模块可打开距离场 把该节点连上,该节点的意思是,距离表面越近,材质显示值为0 不接近表面时: 接近表面时 可勾选该值即可看到距离场具体效果: 未接触表面时: 接触表面时: 产生…...
【SA8295P 源码分析 (四)】26 - QNX Ethernet MAC 驱动 之 emac_rx_thread_handler 数据接收线程 源码分析
【SA8295P 源码分析】26 - QNX Ethernet MAC 驱动 之 emac_rx_thread_handler 数据接收线程 源码分析 一、emac_rx_thread_handler():通过POLL 轮询方式获取数据二、emac_rx_poll_mq():调用 pdata->clean_rx() 来处理消息三、emac_configure_rx_fun_ptr():配置 pdata->…...

VR全景广告:让消费者体验沉浸式交互,让营销更有趣
好的产品都是需要广告宣传的,随着科技的不断发展,市面上的广告也和多年前的传统广告不同,通过VR技术,可以让广告的观赏性以及科技感更加强烈,并且相比于视频广告,成本也更低。 在广告营销中,关键…...

论文阅读 | RAFT: Recurrent All-Pairs Field Transforms for Optical Flow
RAFT: Recurrent All-Pairs Field Transforms for Optical Flow ECCV2020光流任务best paper 论文地址:【here】 代码地址:【here】 介绍 光流是对两张相邻图像中的逐像素运动的一种估计。目前碰到的一些困难包括:物体的快速运动ÿ…...
神经网络的发展历史
神经网络的发展历史可以追溯到上世纪的数学理论和生物学研究。以下是神经网络发展史的详细概述: 早期的神经元模型: 1943年,Warren McCulloch和Walter Pitts提出了一种神经元模型,被称为MCP神经元模型,它模拟了生物神经…...
【单元测试】--单元测试最佳实践
一、单元测试代码风格 编写单元测试代码时,遵循一致的风格和最佳实践是非常重要的,因为它有助于提高代码的可读性、可维护性和可靠性。以下是一些常见的单元测试代码风格和最佳实践: 命名约定: 测试方法的名称应当清晰、描述性&…...

llava1.5-部署
llava1.5 ——demo部署 下载代码和权重 新建weights文件夹,并下载到LLaVA/weights/中。->需要修改文件名为llava-版本,例如llava-v1.5-7b. 运行 启动控制台 python -m llava.serve.controller --host 0.0.0.0 --port 4006启动gradio python -m…...

倒计时 1 天|KCD 2023 杭州站
距离「KCD 2023 杭州站」开始只有 1 天啦 大家快点预约到现场哦~ KCD 2023 活动介绍 HANGZHOU 关于 KCD Kubernetes Community Days(KCD)由云原生计算基金会(CNCF)发起,由全球各国当地的 CNCF 大使、CNCF 员…...

什么是模拟芯片,模拟芯片都有哪些测试指标?
模拟芯片又称处理模拟信号的集成电路 模拟集成电路主要是指由电容、电阻、晶体管等组成的模拟电路集成在一起用来处理模拟信号的集成电路。有许多的模拟集成电路,如运算放大器、模拟乘法器、锁相环、电源管理芯片等。 模拟集成电路的主要构成电路有:放…...

C++-json(2)-unsigned char-unsigned char*-memcpy-strcpy-sizeof-strlen
1.类型转换: //1.赋值一个不知道长度的字符串unsigned char s[] "kobe8llJfFwFSPiy"; //1.用一个字符串初始化变量 unsigned int s_length strlen((char*)s); //2.获取字符串长度//2.字符串里有双引号"" 需要…...

python安装第三方包
1 命令行下载 pip install 包名称 进入命令行输入该命令 由于pip是连接的国外的网站进行包的下载,所以有的时候会速度很慢。 我们可以通过如下命令,让其连接国内的网站进行包的安装: pip install -i https://pypi.tuna.tsinghua.edu.cn/s…...

《数据结构、算法与应用C++语言描述》-队列的应用-电路布线问题
《数据结构、算法与应用C语言描述》-队列的应用-电路布线问题 问题描述 在 迷宫老鼠问题中,可以寻找从迷宫入口到迷宫出口的一条最短路径。这种在网格中寻找最短路径的算法有许多应用。例如,在电路布线问题的求解中,一个常用的方法就是在布…...

GC overhead limit exceeded问题
1.问题现象 程序包运行时候发生了java.lang.OutOfMemoryError: GC overhead limit exceeded异常, 详细信息如下 org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. Cause: org.jboss.util.NestedSQLException: Error; - nested t…...
What‘s new in Arana v0.2.0
Arana 定位于云原生数据库代理,它可以以 sidecar 模式部署为数据库服务网格,项目地址是 https://github.com/arana-db/arana 。Arana 提供透明的数据访问能力,当用户在使用时,可以不用关心数据库的 “分片” 细节,像使…...
STM32 串口接收中断被莫名关闭
使用cubeidestm32f4进行调试,发现UART4串口会被莫名的关掉,导致不能接收数据,经过排查如下: HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) {uint8_t *pd…...

接口测试vs功能测试
接口测试和功能测试的区别: 本文主要分为两个部分: 第一部分:主要从问题出发,引入接口测试的相关内容并与前端测试进行简单对比,总结两者之前的区别与联系。但该部分只交代了怎么做和如何做?并没有解释为什…...
前端面试题整理(1.0)
1.nextTick原理 Vue是异步执行Dom更新的,一旦观察到数据变化,Vue就会开启一个队列,然后把在同一个事件循环(event loop)当中观察到数据变化的Watcher推送到这个队列。如果这个Watcher被触发多次,智慧被推送…...

使用Spire.PDF for Python插件从PDF文件提取文字和图片信息
目录 一、Spire.PDF插件的安装 二、从PDF文件提取文字信息 三、从PDF文件提取图片信息 四、提取图片和文字信息的进阶应用 总结 在Python中,提取PDF文件的文字和图片信息是一种常见的需求。为了满足这个需求,许多开发者会选择使用Spire.PDF插件&…...

springBoot整合讯飞星火认知大模型
1.概述 讯飞星火大模型是科大讯飞最近开放的拥有跨领域的知识和语言理解能力的大模型,能够完成问答对话和文学创作等。由于讯飞星火大模型最近可以免费试用,开发者都可以免费申请一个QPS不超过2的账号,用来实现对平台能力的验证。本文将利用…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...

初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...

FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...

基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...