当前位置: 首页 > news >正文

【计算机网络原理】初始网络基础

文章目录

  • 1. 网络发展史
    • 1.1 单机时代
    • 1.2 网络互连
      • 局域网 LAN
      • 广域网 WAN
  • 2. 网络通信基础
    • 2.1 IP 地址
    • 2.2 端口号
    • 2.3 协议
    • 2.4 五元组
    • 2.5 协议分层
      • 2.5.1 OSI七层模型
      • 2.5.2 TCP/IP五层模型
    • 2.6 封装和分用
      • 2.6.1 数据封装(发送方情况)
      • 2.6.2 数据分用(接收方情况)
  • 总结


1. 网络发展史

1.1 单机时代

指最早计算机出现时, 计算机之间是相互独立的.
在这里插入图片描述

1.2 网络互连

随着时代的发展,越来越需要计算机之间互相通信,共享软件和数据,即以多个计算机协同工作来完成业务,就有了网络互连。

网络互连:将多台计算机连接在一起,完成数据共享。

数据共享本质是网络数据传输,即计算机之间通过网络来传输数据,也称为网络通信。

于是,根据网络互连的规模不同,可以划分为局域网和广域网。

局域网 LAN

局域网,即 Local Area Network,简称LAN。Local 即标识了局域网是本地,局部组建的一种私有网络。

局域网内的主机之间能方便的进行网络通信,又称为内网;局域网和局域网之间在没有连接的情况下,是无法通信的。

局域网组建网络的方式有很多种:

1. 基于网线直连
在这里插入图片描述

2. 基于集线器组建
在这里插入图片描述

3. 基于交换机组建

在这里插入图片描述

4. 基于路由器和交换机组建
在这里插入图片描述

广域网 WAN

广域网,即 Wide Area Network,简称WAN。

通过路由器,将多个局域网连接起来,在物理上组成很大范围的网络,就形成了广域网。广域网内部的局域网都属于其子网。

这样城市和城市,国家和国家的网络之间都可以连接起来。
在这里插入图片描述

2. 网络通信基础

大致了解网络是什么, 它的发展史之后, 接下来我们就认识一些网络中的基本概念.

网络互连的目的是进行网络通信,也即是网络数据传输,更具体一点,是网络主机中的不同进程间,基于网络传输数据。

那么,在组建的网络中,如何判断到底是从哪台主机,将数据传输到那台主机呢?这就需要使用IP地址来标识。

2.1 IP 地址

IP 地址就是用来描述一个设备在网络中的虚拟位置, 每一个上网的设备在网络中都会有一个自己的 IP 地址.

概念

IP 地址主要用于标识网络主机、其他网络设备(如路由器)的网络地址。简单说,IP 地址用于定位主机的网络地址。就像我们发送快递一样,需要知道对方的收货地址,快递员才能将包裹送到目的地。

格式

IP 地址是一个32位的二进制数,通常被分割为4个 “8位二进制数”(也就是4个字节),如:01100100.00000100.00000101.00000110. 通常会用“点分十进制”的方式来表示,即 a.b.c.d 的形式(a,b,c,d都是0~255之间的十进制整数)如:100.4.5.6.

2.2 端口号

现在 IP 地址解决了网络通信时,如何定位网络主机的问题,但是还存在一个问题,传输到目的主机后,由哪个进程来接收这个数据呢?这就需要端口号来标识。

概念

在网络通信中,IP地址用于标识主机网络地址,端口号可以标识主机中发送数据、接收数据的进程。简单说:端口号用于定位主机中的进程。类似发送快递时,不光需要指定收货地址(IP地址),还需要指定收货人 (端口号) , 简单来说就是用来区分一台主机上的不同应用程序.

格式

端口号是0~65535范围的数字,在网络通信中,进程可以通过绑定一个端口号,来发送及接收网络数据。

注意事项
两个不同的进程,不能绑定同一个端口号,但一个进程可以绑定多个端口号。

常见端口号

21端口:FTP 文件传输服务
22端口:SSH协议、SCP(文件传输)、端口号重定向
23/tcp端口:TELNET 终端仿真服务
25端口:SMTP 简单邮件传输服务
53端口:DNS 域名解析服务
69/udp:TFTP
80/8080/3128/8081/9098端口:HTTP协议代理服务器
110/tcp端口:POP3(E-mail)
119端口:Network 
123端口:NTP(网络时间协议)
135、137、138、139端口: 局域网相关默认端口,应关闭
161端口:SNMP(简单网络管理协议)
389端口:LDAP(轻量级目录访问协议)、ILS(定位服务)
443/tcp 443/udp:HTTPS服务器
465端口:SMTP(简单邮件传输协议)
873端口:rsync
1080端口:SOCKS代理协议服务器常用端口号、QQ
1158端口:ORACLE EMCTL
1433/tcp/udp端口:MS SQL*SERVER数据库server、MS SQL*SERVER数据库monitor
1521端口:Oracle 数据库
2100端口:Oracle XDB FTP服务
3389端口:WIN2003远程登录
3306端口:MYSQL数据库端口
5432端口:postgresql数据库端口
5601端口:kibana
6379端口:Redis数据库端口
8080端口:TCP服务端默认端口、JBOSS、TOMCAT、Oracle XDB(XML 数据库)
8081端口:Symantec AV/Filter for MSE
8888端口:Nginx服务器的端口
9000端口:php-fpm
9080端口:Webshpere应用程序
9090端口:webshpere管理工具
9200端口:Elasticsearch服务器端口
10050端口:zabbix_server 10050
10051端口:zabbix_agent
11211端口:memcache(高速缓存系统)
27017端口:mongoDB数据库默认端口
22122端口:fastdfs服务器默认端口

2.3 协议

现在有了IP地址和端口号,可以定位到网络中唯一的一个进程,但还存在一个问题,网络通信是基于二进制0/1数据来传输,如何告诉对方发送的数据是什么样的呢?

网络通信传输的数据类型可能有多种:图片,视频,文本等。同一个类型的数据,格式可能也不同,如发送一个文本字符串 "你好!" , 如何标识发送的数据是文本类型,及文本的编码格式呢?

所以, 基于网络数据传输时,还需要使用协议来规定双方的数据格式。

概念

协议,网络协议的简称,网络协议是网络通信(即网络数据传输)经过的所有网络设备都必须共同遵从的一组约定、规则。如怎么样建立连接、怎么样互相识别等。只有遵守这个约定,计算机之间才能相互通信交流。通常由三要素组成:

  1. 语法:即数据与控制信息的结构或格式;类似打电话时,双方要使用同样的语言:普通话
  2. 语义:即需要发出何种控制信息,完成何种动作以及做出何种响应;语义主要用来说明通信双方应当怎么做。用于协调与差错处理的控制信息。类似打电话时,说话的内容。
  3. 时序,即事件实现顺序的详细说明。时序定义了何时进行通信,先讲什么,后讲什么,讲话的速度等。比如是采用同步传输还是异步传输。

协议(protocol)最终体现为在网络上传输的数据包的格式。

作用

为什么需要协议?就好比我们与别人互相约定好在哪里见面,什么时候见面,这就是一种提前的约定,也可以称之为协议。

在这里插入图片描述

计算机之间的传输媒介是光信号和电信号。通过 “频率” 和 “强弱” 来表示 0 和 1 这样的信息。要想传递各种不同的信息,就需要约定好双方的数据格式。

  • 因为计算机生产厂商有很多;
  • 计算机操作系统,也有很多;
  • 计算机网络硬件设备,还是有很多;
  • 如何让这些不同厂商之间生产的计算机能够相互顺畅的通信? 就需要有人站出来,约定一个共同的标准,大家都来遵守,这就是 网络协议;

2.4 五元组

在 TCP/IP 协议中,通常用五元组来标识一个网络通信:

  1. 源IP:标识源主机
  2. 源端口号:标识源主机中该次通信发送数据的进程
  3. 目的IP:标识目的主机
  4. 目的端口号:标识目的主机中该次通信接收数据的进程
  5. 协议号:标识发送进程和接收进程双方约定的数据格式

五元组在网络通信中的作用,类似于发送快递:

在这里插入图片描述

2.5 协议分层

对于网络协议来说,往往分成几个层次进行定义。

分层的作用

为什么需要网络协议的分层?

分层最大的好处,类似于面向接口编程:定义好两层间的接口规范,让双方遵循这个规范来对接。

在代码中,类似于定义好一个接口,一方为接口的实现类(提供方,提供服务),一方为接口的使用类(使用方,使用服务):

  • 对于使用方来说,并不关心提供方是如何实现的,只需要使用接口即可
  • 对于提供方来说,利用封装的特性,隐藏了实现的细节,只需要开放接口即可。

协议分层, 主要有两种模式.

  • OSI 七层模型
  • TCP/IP 五层模型

2.5.1 OSI七层模型

OSI 七层模型既复杂又不实用, 所以 OSI 七层模型并没有落地实现, 现在也只会在教科书上见到. 实际组建网络时, 只是以 OSI 七层模型设计中的部分分层, 也即是以下 TCP/IP 五层模型来实现.

2.5.2 TCP/IP五层模型

TCP/IP是一组协议的代名词,它还包括许多协议,组成了TCP/IP协议簇。

TCP/IP通讯协议采用了5层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。

  • 应用层:负责应用程序间沟通,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。我们的网络编程主要就是针对应用层。
  • 传输层:负责两台主机之间的数据传输。如传输控制协议 (TCP),能够确保数据可靠的从源主机发送到目标主机。
  • 网络层:负责地址管理和路由选择。例如在IP协议中,通过IP地址来标识一台主机,并通过路由表的方式规划出两台主机之间的数据传输的线路(路由)。路由器(Router)工作在网路层。
  • 数据链路层:负责设备之间的数据帧的传送和识别。例如网卡设备的驱动、帧同步(就是说从网线上检测到什么信号算作新帧的开始)、冲突检测(如果检测到冲突就自动重发)、数据差错校验等工作。有以太网、令牌环网,无线LAN等标准。交换机(Switch)工作在数据链路层。
  • 物理层:负责光/电信号的传递方式。比如现在以太网通用的网线(双绞 线)、早期以太网采用的的同轴电缆(现在主要用于有线电视)、光纤,现在的wifi无线网使用电磁波等都属于物理层的概念。物理层的能力决定了最大传输速率、传输距离、抗干扰性等。集线器(Hub)工作在物理层。

在这里插入图片描述
物理层我们考虑的比较少, 因此很多时候也可以称为 TCP/IP 四层模型.

2.6 封装和分用

封装和分用是网络传输数据时的基本流程, 每次网络传输都要进行这俩个过程.

  • 不同的协议层对数据包有不同的称谓,在传输层叫做段(segment),在网络层叫做数据报(datagram),在链路层叫做帧(frame)。
  • 应用层数据通过协议栈发到网络上时,每层协议都要加上一个数据首部 (header),称为封装 (Encapsulation)。
  • 首部信息中包含了一些类似于首部有多长,载荷(payload)有多长,上层协议是什么等信息。
  • 数据封装成帧后发到传输介质上,到达目的主机后每层协议再剥掉相应的首部,根据首部中的 “上层协议字段” 将数据交给对应的上层协议处理。

2.6.1 数据封装(发送方情况)

我们就简单拿给好友发送一条qq消息为例, 当然真实的数据封装过程, 肯定还会比较复杂.

1. 应用层

QQ应用程序, 从输入框中获取到你要发送的消息, 构造成一个数据报(根据应用层的协议) , 通常很多应用程序中都会自定义应用层协议.

在这里, 我们假设 QQ 的应用层协议是这样的 发送人QQ号, 接收人QQ号, 时间, 消息内容, 所谓构造应用层数据报, 就是按照一定的格式进行字符串拼接, 发送方和接收方此格式需要达成一致.

在这里插入图片描述

当构造好数据报后, 应用程序就会调用传输层提供的接口, 将上述数据交给传输层进行处理.

2. 传输层

传输层协议有很多种, 其中最主要的就是 TCP 和 UDP 协议, 此处我们假设使用 UDP 协议.

上面我们将数据从应用层传到了传输层, 交给了 UDP, 于是 UDP 协议就会按照自己的协议格式, 生成一个 UDP 数据段.

在这里插入图片描述
UDP 不关心应用层数据里面内容是什么, 只会把应用层传来的数据当成字符串, 构造出一个 UDP 数据段来.

此时, 传输层会把构造好的 UDP 数据段, 进一步的交给网络层.

3. 网络层

网络层最主要的协议是 IP 协议. IP 协议也会根据自己的格式, 将传输层传来的数据段构造成一个 IP 数据报. 同样 IP 协议也不关心其中内容是什么, 只是单纯的把他当成一个字符串, 在这基础上再拼接一个 IP 报头.

在这里插入图片描述
然后, 网络层就会将数据报传给数据链路层.

4. 数据链路层

传到数据链路层后, 此时以太网, 会针对 IP 数据报, 进行进一步的封装, 添加一个帧头和一个帧尾, 构造出一个数据帧来. 同样, 以太网也不关心其中内容是什么.

在这里插入图片描述
上述这样的数据帧, 还需要进一步交给物理层.

5. 物理层

物理层指的就是我们的一些硬件设备, 比如网卡, 现在收到了数据链路层传来的数据帧. 本质上都是二进制的数据 (由 1010 构成的), 硬件设备就需要对上述数据进行转换了. 通过光电信号等等. 具体如何转换, 我们在此不仔细研究.

到这里, 我们就完成了发送过程.

一图总结

在这里插入图片描述

2.6.2 数据分用(接收方情况)

作为接收方, 我们是如何收到对方发送的 QQ 消息的呢?

1. 物理层

物理层收到光电信号, 就会对收到的信号进行解调, 就会得到一串 1010 的二进制数据序列, 也就是以太网数据帧.

在这里插入图片描述
解调后的数据帧就要被交给上一层, 数据链路层.

2. 数据链路层

数据链路层的以太网协议, 就会针对这个数据进行解析. 进行 “掐头去尾”.

在这里插入图片描述
此时将载荷部分取出来, 交给上层网络层.

3. 网络层

网络层的 IP 协议针对这个数据报进行解析, 去掉 IP 报头, 取出载荷, 进一步交给传输层.

在这里插入图片描述
根据网络层 IP 报头中的某个字段, 就可以知道当前这个载荷是一个 UDP 数据段, 于是便将其交给 UDP 处理.

4. 传输层

UDP 也是会针对数据段进行解析, 去掉段头, 取出载荷, 交给应用层的某个应用程序.

在这里插入图片描述
UDP 段头中, 有一个字段是用来记录目的端口的, 根据目的端口即可找到对应的应用程序.

5. 应用层

当 QQ 程序接收到这个数据后, 就会按照 QQ 的应用层协议, 进行解析.

在这里插入图片描述
进而将这里的数据显示到界面上, 这样接收方就收到了消息, 并且有时间信息, 内容信息等等.

一图总结
在这里插入图片描述


总结

✨ 本文主要讲解了计算机网络的一些基础知识, 网络的发展史, IP 地址, 端口号, 协议等等, 还重点讲述了网络传输时的封装和分用.
✨ 想了解更多计算机网络的知识, 可以收藏一下本人的计算机网络学习专栏, 里面会持续更新本人的学习记录, 跟随我一起不断学习.
✨ 感谢你们的耐心阅读, 博主本人也是一名学生, 也还有需要很多学习的东西. 写这篇文章是以本人所学内容为基础, 日后也会不断更新自己的学习记录, 我们一起努力进步, 变得优秀, 小小菜鸟, 也能有大大梦想, 关注我, 一起学习.

再次感谢你们的阅读, 你们的鼓励是我创作的最大动力!!!!!

相关文章:

【计算机网络原理】初始网络基础

文章目录 1. 网络发展史1.1 单机时代1.2 网络互连局域网 LAN广域网 WAN 2. 网络通信基础2.1 IP 地址2.2 端口号2.3 协议2.4 五元组2.5 协议分层2.5.1 OSI七层模型2.5.2 TCP/IP五层模型 2.6 封装和分用2.6.1 数据封装(发送方情况)2.6.2 数据分用(接收方情况) 总结 1. 网络发展史…...

【sqlserver】配置管理器打不开

问题描述 无法连接到 WMI 提供程序。您没有权限或者该服务器无法访问。请注意,您只能使用SQL Server 配置管理器来管理 SQL Server 2005 和更高版本的服务 器。无效类[0x80041010] 解决方式: 命令提示符-右键-以管理员身份运行,再把以下代码执行一遍&…...

磁盘清理 | 已经卸载的软件还出现在应用和功能里怎么办?

一句话总结解决方法: 安装Geek Uninstaller,删除卸载残留。 问题描述: 最近磁盘满了,需要删除一些平时不常用的软件,但是发现一个问题。就是已经删除的软件,仍然会出现在“应用与功能”中。并且显示卸载图标为灰色&am…...

C++之异常

目录 一、C语言传统的处理错误的方式 二、C的异常 1、概念 2、关键字 3、基本格式 三、异常的抛出和捕获 1、异常的抛出和匹配原则 2、 在函数调用链中异常栈展开匹配原则 四、异常抛派生类,基类捕获 五、异常的重新抛出 六、异常安全 七、异常的优缺点…...

动态天气预报:Living Weather HD for Mac

Living Weather HD能够为Mac用户提供及时、准确、个性化的天气信息,并提供了丰富的定制选项,使用户能够更加方便地查看天气状况。 具有以下特点: 显示世界各地的准确天气预报和当地时间。自动探测出用户所在的首个地点,并通过搜…...

深度神经网络时与协方差矩阵

平时训练深度神经网络时,什么时候用到了协方差矩阵 在深度神经网络的平时训练过程中,一般情况下不直接使用协方差矩阵。然而,协方差矩阵的概念和相关性的考虑在某些情况下可以对网络的训练和优化起到一定的指导作用。 下面是一些与协方差矩…...

idea中java类属性(字段)链式赋值

很多人看到标题可能会想到 lombok 的 Builder,lombok 在国内用的挺多的,开源的组件中 mybatis-plus 中用到了这个,使用这个有一个问题就是通过对应 get 和 set 方法找不到对应的赋值方法,因为 lombok 使用了 apt 在编译期生成了相…...

vue通知(滚动)

1. li宽度不顾定 <template><div id"app"><div id"box" mouseover"clearLeft" mouseleave"setLeft"><ul :style"{ transform: translateX( left px) }" ref"cmdlist"><li v-for&qu…...

linux安装新版本git2、配置github-ssh。(centos、aws)

一、安装Git 1、yum默认版本git #1.安装git sudo yum install git -y #2.确认Git已经安装成功 git --version如果要安装较新版本&#xff0c;可以安装一个repo &#xff0c;但是我这第一次尝试失败了&#xff0c;执行完提示找不到git2u&#xff0c;ius repo也连不上。而且每次…...

毅速丨3D打印结合拓扑优化 让轻量化制造更容易

制造轻量化对于提高能源利用效率、提高产品性能和减少环境影响&#xff0c;推动制造业的绿色化、高质量发展具有重要的促进作用。 轻量化设计对许多领域都有着重要影响&#xff0c;尤其是那些需要降低能源消耗、提高运输效率或减少对环境影响的领域。如航空航天&#xff0c;轻量…...

6252: 【C1】【分支】比较大小(一)

目录 题目描述 输入 输出 样例输入 样例输出 提示 来源 C代码&#xff1a; 题目描述 输入两个整数&#xff0c;输出较大数&#xff08;两数相等输出任意一个&#xff09; 输入 两行 第一行一个整数&#xff1a;m 第二行一个整数&#xff1a;n ( -30000 < m , n…...

网工实验手册:RSTP如何配置?

1. 实验目的 熟悉RSTP的应用场景掌握RSTP的配置方法 想要华为数通配套实验拓扑和配置笔记的朋友们点赞关注&#xff0c;评论区留下邮箱发给你! 2. 实验拓扑 实验拓扑如图所示&#xff1a; 图&#xff1a;RSTP的配置 3. 实验步骤 &#xff08;1&#xff09; …...

uniapp开发h5引入第三方js(sdk)

manifest.json 应用配置 | uni-app官网 根据文档上描述需要自定义模板的场景为&#xff1a; 方法一&#xff1a; 起初以为是在原有的index.html基础上再新建一个html文件&#xff0c;在项目根目录建立一个template.h5.html&#xff08;仿照hello-uni-app项目&#xff09;&…...

Could not find artifact com.sleepycat;je:jar:7.3.7 in aliyunmaven

在编译inlong源码时报的错误&#xff0c;去本地库里发现只有lastupdate的文件&#xff0c;就又去maven库里看了一下Maven Repository: com.sleepycat je (mvnrepository.com)&#xff0c;发现没有这个版本&#xff0c;将版本进行修改错误解决...

rust学习—— 控制流if 表达式

控制流 根据条件是否为真来决定是否执行某些代码&#xff0c;或根据条件是否为真来重复运行一段代码&#xff0c;是大部分编程语言的基本组成部分。Rust 代码中最常见的用来控制执行流的结构是 if 表达式和循环。 if 表达式 if 表达式允许根据条件执行不同的代码分支。你提供…...

POSIX信号量

目录 信号量的原理 信号量函数 使用信号量实现线程互斥功能 基于环形队列的生产消费模型 生产者和消费者必须遵守的两个规则 信号量的原理 通过之前的学习&#xff0c;我们知道有的资源可能会被多个执行流同时申请访问&#xff0c;我们将这种资源叫做临界资源&#xff0c…...

stable diffusion和midjourney哪个好

midjourney和stable diffusion哪个好&#xff1f;midjourney和stable diffusion的区别&#xff1f;那么今天就从这2款软件入手&#xff0c;来探索一下他们的功能的各项区别吧&#xff0c;让你选择更适合你的一款ai软件。 截至目前&#xff0c;我们目睹了生成式人工智能工具的在…...

固件签名的安全解决方案 安当加密

在汽车行业中&#xff0c;加密机常用于对固件进行签名&#xff0c;以增加固件的安全性和完整性。以下是几个可能的使用场景&#xff1a; 固件验证&#xff1a;当汽车制造商或供应商需要对固件进行验证时&#xff0c;可以使用加密机来验证固件的来源和完整性。通过使用公钥和私…...

istio介绍(一)

1. 概念 1.1 虚拟服务 虚拟服务提供流量路由功能&#xff0c;它基于 Istio 和平台提供的基本的连通性和服务发现能力&#xff0c;让您配置如何在服务网格内将请求路由到服务 示例&#xff1a; apiVersion: networking.istio.io/v1alpha3 kind: VirtualService metadata:nam…...

基于鱼鹰优化的BP神经网络(分类应用) - 附代码

基于鱼鹰优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于鱼鹰优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.鱼鹰优化BP神经网络3.1 BP神经网络参数设置3.2 鱼鹰算法应用 4.测试结果&#xff1a;5.M…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...