基于鱼鹰优化的BP神经网络(分类应用) - 附代码
基于鱼鹰优化的BP神经网络(分类应用) - 附代码
文章目录
- 基于鱼鹰优化的BP神经网络(分类应用) - 附代码
- 1.鸢尾花iris数据介绍
- 2.数据集整理
- 3.鱼鹰优化BP神经网络
- 3.1 BP神经网络参数设置
- 3.2 鱼鹰算法应用
- 4.测试结果:
- 5.Matlab代码
摘要:本文主要介绍如何用鱼鹰算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。
1.鸢尾花iris数据介绍
本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:
| 特征1 | 特征2 | 特征3 | 类别 | |
|---|---|---|---|---|
| 单组iris数据 | 5.3 | 2.1 | 1.2 | 1 |
3种类别用1,2,3表示。
2.数据集整理
iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:
| 训练集(组) | 测试集(组) | 总数据(组) |
|---|---|---|
| 105 | 45 | 150 |
类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。
当进行数据训练对所有输入特征数据均进行归一化处理。
3.鱼鹰优化BP神经网络
3.1 BP神经网络参数设置
通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络参数如下:
%创建神经网络
inputnum = 4; %inputnum 输入层节点数 4维特征
hiddennum = 10; %hiddennum 隐含层节点数
outputnum = 3; %outputnum 隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;
3.2 鱼鹰算法应用
鱼鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/130542706
鱼鹰算法的参数设置为:
popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
% inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
% hiddennum + outputnum 为权值的个数
dim = inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;% inputnum * hiddennum + hiddennum*outputnum维度
这里需要注意的是,神经网络的阈值数量计算方式如下:
本网络有2层:
第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;
第一层的权值数量为:10;即hiddennum;
第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;
第二层权值数量为:3;即outputnum;
于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;
适应度函数值设定:
本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。
4.测试结果:
从鱼鹰算法的收敛曲线可以看到,整体误差是不断下降的,说明鱼鹰算法起到了优化的作用:



5.Matlab代码
相关文章:
基于鱼鹰优化的BP神经网络(分类应用) - 附代码
基于鱼鹰优化的BP神经网络(分类应用) - 附代码 文章目录 基于鱼鹰优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.鱼鹰优化BP神经网络3.1 BP神经网络参数设置3.2 鱼鹰算法应用 4.测试结果:5.M…...
【LeetCode】145. 二叉树的后序遍历 [ 左子树 右子树 根结点]
题目链接 文章目录 Python3方法一: 递归 ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup ⟮O(n)⟯方法二: 迭代 ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup ⟮O(n)⟯方法三: Morris ⟮ O ( n ) 、 O ( 1 ) ⟯ \lgroup O(n)、O(1) \rgroup ⟮O(n)、O(1)⟯写…...
Unity之ShaderGraph如何实现触电电流效果
前言 之前使用ASE做过一个电流效果的shader,今天我们通过ShaderGraph来实现一个电流效果。 效果如下: 关键节点 Simple Noise:根据输入UV生成简单噪声或Value噪声。生成的噪声的大小由输入Scale控制。 Power:返回输入A的结果…...
【微信小程序调试工具试用】
【微信小程序调试工具试用】 试用大佬开发的dll拿到某物小程序sign签名 (过于简单 大佬勿喷)本次工具分享到此结束 什么是爬虫逆向? 试用大佬开发的dll拿到某物小程序sign签名 (过于简单 大佬勿喷) 1 如图 下面小程序…...
机械生产ERP管理系统
机械生产ERP管理系统 功能介绍: 生产管理: 1.灵活自定义生产车间、成本费用类型、成本项目; 2.方便直观的物料清单(BOM),并可以逆向展开; 3.科学实用的物料需求计划(MRP)&#x…...
Vue 模板字符串碰到script无法识别,报错Parsing error: Unterminated template.
需求: 将js代码完整的显示在界面上,包括标签 代码如下: 报错信息如下: 我们在上图中可以看到模板字符串加入了script标签后会报错 原因:运行JS的时候由上至下,先识别模板字符串里面的script标签…...
AWS SAP-C02教程5--基础中间件
在AWS中除了计算、存储、网络之外,还有一些组件非常重要,包括基础组件、消息队列组件、日志组件、编排组件等,接下来就通过分成几个不同类别(这个分类按照AWS的大概分类进行分类,并无统一标准,只是具备一定相同功能归类在一起方便记忆) 目录 1 消息中间件1.1 SQS1.1.1 …...
2022年亚太杯APMCM数学建模大赛E题有多少核弹可以摧毁地球求解全过程文档及程序
2022年亚太杯APMCM数学建模大赛 E题 有多少核弹可以摧毁地球 原题再现 1945年8月6日,第二次世界大战即将结束。为了尽快结束战争,美国在日本广岛投下了下一颗名为“小男孩”的原子弹。这样一颗原子弹在广岛炸死了20万人,广岛的所有建筑物都…...
论文阅读[51]通过深度学习快速识别荧光组分
【论文基本信息】 标题:Fast identification of fluorescent components in three-dimensional excitation-emission matrix fluorescence spectra via deep learning 标题译名:通过深度学习快速识别 三维激发-发射矩阵荧光光谱中的荧光组分 期刊与年份&…...
解决Flutter启动一直卡在 Running Gradle task ‘assembleDebug‘...
前言 新建了一个Flutter工程后,Run APP 却一直卡在了Running Gradle task ‘assembleDebug’… 这里。百度查询原因是因为 Gradle 的 Maven 仓库在国外, 因此需要使用阿里云的镜像地址。 1、修改项目中android/build.gradle文件 将 buildscript.repositories 下面…...
c/c++的include机制简述
一 引言 做c/c编程的对#include指令都不会陌生,绝大多数也都知道如何使用,但我相信仍有人对此是一知半解, C: #include <stdio.h>C: #include <iostream> 表示包含C/C标准输入头文件。包含指令不仅仅限于.h头文件,可…...
YOLOv5算法改进(16)— 增加小目标检测层 | 四头检测机制(包括代码+添加步骤+网络结构图)
前言:Hello大家好,我是小哥谈。小目标检测层是指在目标检测任务中用于检测小尺寸目标的特定网络层。由于小目标具有较小的尺寸和低分辨率,它们往往更加难以检测和定位。YOLOv5算法的检测速度与精度较为平衡,但是对于小目标的检测效果不佳,根据一些论文,我们可以通过增加检…...
【计网 EMail】计算机网络 EMail协议详解:中科大郑烇老师笔记 (五)
目录 0 引言1 电子邮件EMail1.1 组成1.2 SMTP协议1.3 案例:Alice给Bob发送报文1.4 SMTP总结1.5 邮件报文格式1.6 POP3协议和IMAP协议 🙋♂️ 作者:海码007📜 专栏:计算机四大基础专栏📜 其他章节…...
算法随想录算法训练营第四十三天|300.最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组
300.最长递增子序列 题目:给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,…...
Nginx配置限流
Nginx配置限流 Nginx有限流功能,是基于漏桶算法实现的 limit_req_zone是配置在http模块中的 #设置限流 zone用来定义ip状态和url访问频率的共享区域,其中mylimit为区域名称,冒号后为区域大小,16000个IP地址的状态信息大约是1M&am…...
【SA8295P 源码分析 (四)】25 - QNX Ethernet MAC 驱动 之 emac_isr_thread_handler 中断处理函数源码分析
【SA8295P 源码分析】25 - QNX Ethernet MAC 驱动 之 emac_isr_thread_handler 中断处理函数源码分析 一、emac 中断上半部:emac_isr()二、emac 中断下半部:emac_isr_thread_handler()2.1 emac 中断下半部:emac_isr_sw()系列文章汇总见:《【SA8295P 源码分析 (四)】网络模块…...
C#,数值计算——分类与推理Phylo_clc的计算方法与源程序
1 文本格式 using System; using System.Collections.Generic; namespace Legalsoft.Truffer { public class Phylo_clc : Phylagglom { public override void premin(double[,] d, int[] nextp) { } public override double dminfn(double[…...
力扣第455题 分发饼干 c++ 贪心 经典题
题目 455. 分发饼干 简单 相关标签 贪心 数组 双指针 排序 假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。 对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干…...
Netty系列教程之NIO基础知识
近30集的孙哥视频课程,看完一集整理一集来的,内容有点多,请大家放心食用~ 1. 网络通讯的演变 1.1 多线程版网络通讯 在传统的开发模式中,客户端发起一个 HTTP 请求的过程就是建立一个 socket 通信的过程,服务端在建立…...
【题解 树形dp 拆位】 树上异或
「KDOI-06-S」树上异或 题目描述 给定一棵包含 n n n 个节点的树,第 i i i 个点有一个点权 x i x_i xi。 对于树上的 n − 1 n-1 n−1 条边,每条边选择删除或不删除,有 2 n − 1 2^{n-1} 2n−1 种选择是否删除每条边的方案。 对于…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
