当前位置: 首页 > news >正文

【题解 树形dp 拆位】 树上异或

「KDOI-06-S」树上异或

题目描述

给定一棵包含 n n n 个节点的树,第 i i i 个点有一个点权 x i x_i xi

对于树上的 n − 1 n-1 n1 条边,每条边选择删除或不删除,有 2 n − 1 2^{n-1} 2n1 种选择是否删除每条边的方案。

对于每种删除边的方案,设删除后的图包含 k k k 个连通块,定义这个方案的权值为图中连通块点权异或和的乘积。形式化地说,若这张图包含连通块 C 1 , C 2 , … , C k C_1,C_2,\ldots,C_k C1,C2,,Ck,其中 C i C_i Ci 是第 i i i 个连通块的顶点集合,设 v i = ⨁ u ∈ C i x u v_i=\bigoplus_{u\in C_i} x_u vi=uCixu,则这个方案的权值为 v 1 × v 2 × ⋯ × v k v_1\times v_2\times \cdots\times v_k v1×v2××vk

求这 2 n − 1 2^{n-1} 2n1 种删除边的方案的权值之和,答案对 998 244 353 998~244~353 998 244 353 取模。

输入格式

从标准输入读入数据。

输入的第一行包含一个正整数 n n n,表示树的节点个数。

第二行 n n n 个非负整数 x 1 , x 2 , … , x n x_1,x_2,\ldots,x_n x1,x2,,xn,表示每个点的点权。

第三行 n − 1 n-1 n1 个正整数 f 2 , f 3 , … , f n f_2,f_3,\ldots,f_n f2,f3,,fn,表示节点 i i i f i f_{i} fi 之间有一条无向边。

输出格式

输出到标准输出。

输出包含一行一个整数,表示所有 2 n − 1 2^{n-1} 2n1 种删除边的方案的权值之和,答案对 998 244 353 998~244~353 998 244 353 取模。

样例 #1

样例输入 #1

3
1 2 3
1 1

样例输出 #1

19

样例 #2

样例输入 #2

5
3 4 5 6 7
1 1 2 2

样例输出 #2

5985

提示

【样例解释 #1】

有四种删除边的方案:

  • 不删除边:图有且仅有一个连通块,权值为 1 ⊕ 2 ⊕ 3 = 0 1\oplus2\oplus3=0 123=0
  • 删除 ( 1 , 2 ) (1,2) (1,2) 一条边:图包含两个连通块,权值为 ( 1 ⊕ 3 ) × 2 = 4 (1\oplus3)\times2=4 (13)×2=4
  • 删除 ( 1 , 3 ) (1,3) (1,3) 一条边:图包含两个连通块,权值为 ( 1 ⊕ 2 ) × 3 = 9 (1\oplus2)\times3=9 (12)×3=9
  • 删除 ( 1 , 2 ) (1,2) (1,2) ( 1 , 3 ) (1,3) (1,3) 两条边:图包含三个连通块,权值为 1 × 2 × 3 = 6 1\times2\times3=6 1×2×3=6

所有方案权值的总和为 0 + 4 + 9 + 6 = 19 0+4+9+6=19 0+4+9+6=19

【样例 #3】

见选手目录下的 xor/xor3.inxor/xor3.ans

这个样例满足测试点 6 ∼ 7 6\sim7 67 的条件限制。

【样例 #4】

见选手目录下的 xor/xor4.inxor/xor4.ans

这个样例满足测试点 8 8 8 的条件限制。

【样例 #5】

见选手目录下的 xor/xor5.inxor/xor5.ans

这个样例满足测试点 9 9 9 的条件限制。

【样例 #6】

见选手目录下的 xor/xor6.inxor/xor6.ans

这个样例满足测试点 19 ∼ 21 19\sim21 1921 的条件限制。


【数据范围】

对于所有数据保证: 1 ≤ n ≤ 5 × 1 0 5 1\leq n\leq5\times10^5 1n5×105 0 ≤ x i ≤ 1 0 18 0\leq x_i\leq10^{18} 0xi1018 1 ≤ f i < i 1\leq f_i<i 1fi<i

测试点编号 n ≤ n\leq n x i x_i xi特殊性质
1 ∼ 2 1\sim2 12 12 12 12 ≤ 1 0 9 \leq10^9 109
3 3 3 2000 2000 2000 = 1 =1 =1
4 4 4 1 0 5 10^5 105 = 1 =1 =1A
5 5 5 1 0 5 10^5 105 = 1 =1 =1B
6 ∼ 7 6\sim7 67 1 0 5 10^5 105 = 1 =1 =1
8 8 8 1 0 5 10^5 105 ≤ 7 \leq7 7A
9 9 9 1 0 5 10^5 105 ≤ 7 \leq7 7B
10 ∼ 11 10\sim11 1011 1 0 5 10^5 105 ≤ 7 \leq7 7
12 ∼ 16 12\sim16 1216 200 200 200 ≤ 8191 \leq8191 8191
17 17 17 1 0 5 10^5 105 ≤ 1 0 9 \leq10^9 109A
18 18 18 1 0 5 10^5 105 ≤ 1 0 9 \leq10^9 109B
19 ∼ 21 19\sim21 1921 1 0 5 10^5 105 ≤ 1 0 9 \leq10^9 109
22 ∼ 25 22\sim25 2225 5 × 1 0 5 5\times10^5 5×105 ≤ 1 0 18 \leq10^{18} 1018
  • 特殊性质 A:保证对于任意 1 < i ≤ n 1< i\le n 1<in f i = i − 1 f_i=i-1 fi=i1
  • 特殊性质 B:保证对于任意 1 < i ≤ n 1< i\le n 1<in f i = 1 f_i=1 fi=1

【提示】

⊕ \oplus 表示按位异或运算。

本题输入输出量较大,请使用适当的 I/O 方式。

请注意常数因子对程序运行效率产生的影响。


分析:

树上问题一下子不好分析,我们首先从链的问题来考虑
一一枚举所有的断边情况,时间复杂度是 O ( 2 n ) O(2^n) O(2n),显然爆炸

我们考虑dp
f i f_i fi表示第i个点的答案( ∑ ∏ \sum\prod ∑∏)
我们考虑枚举前面的断边,
f i = ∑ f j ∗ ( s i x o r s j ) f_i=\sum f_j*(s_i xor s_j) fi=fj(sixorsj)

这样 O ( n 2 ) O(n_2) O(n2)就能把问题全部解决,但是还是不够

怎么办?
我们考虑拆位
g i , j , 0 / 1 g_{i,j,0/1} gi,j,0/1表示第i个点,i所在的联通块的点权二进制的第j位为0/1时,与i所在连通块断开的连通块的答案是多少

对于当前边,我们有断和不断两个选择,如果不断,那么i的前一个点也包含在了i所在的连通块上,需要根据情况去转移对应点的01值,如果当前边断掉,那么前一个点的二进制值就当做0来考虑

于是我们进行以下转移:
在这里插入图片描述

感谢大佬的博客
而后f加起来即可


#include<bits/stdc++.h>
using namespace std;#define ll long longll Mo = 998244353;const int N = 5e5+10;
int n;
ll a[N],f[N],g[N][64][2];
struct Node{int y,Next;
}e[2*N];
int len , Linkk[N];#define gc getchar()
ll read(){ll s = 0 , ff = 0; char ch = gc;while (ch < '0' || ch > '9') ff|=ch == '-' , ch = gc;while (ch >= '0' && ch <= '9') s = s*10+ch-48 , ch = gc;return ff?-s:s;
} void Insert(int x,int y){e[++len] = (Node){y,Linkk[x]};Linkk[x] = len;
}void Dfs(int x,int faa){for (int i = 0; i < 64; i++){int xx = (a[x]>>i)&1;g[x][i][xx] = 1;}for (int j = Linkk[x]; j; j = e[j].Next){int y = e[j].y;if (y == faa) continue;Dfs(y,x);for (int i = 0; i < 64; i++){int t0 = g[x][i][0] , t1 = g[x][i][1];g[x][i][0] = (t0*((g[y][i][0]+f[y]))+t1*g[y][i][1])%Mo;g[x][i][1] = (t1*((g[y][i][0]+f[y]))+t0*g[y][i][1])%Mo;}}for (int i = 0; i < 64; i++)f[x] = (f[x]+(1ll<<i)%Mo*g[x][i][1])%Mo;return;
}signed main(){n = read();for (int i = 1; i <= n; i++) a[i] = read();for (int i = 2,x; i <= n; i++)x = read(),Insert(i,x),Insert(x,i);Dfs(1,0);printf("%lld",f[1]%Mo);return 0;
}

相关文章:

【题解 树形dp 拆位】 树上异或

「KDOI-06-S」树上异或 题目描述 给定一棵包含 n n n 个节点的树&#xff0c;第 i i i 个点有一个点权 x i x_i xi​。 对于树上的 n − 1 n-1 n−1 条边&#xff0c;每条边选择删除或不删除&#xff0c;有 2 n − 1 2^{n-1} 2n−1 种选择是否删除每条边的方案。 对于…...

SpringBoot项目访问后端页面404

检查项目的路径和mapper映射路径没问题后&#xff0c;发现本级pom文件没有加入web启动模块的pom文件中 maven做项目控制时&#xff0c;要注意将maven模块加入到web启动模块中...

设计模式-综合应用(一)

介绍 使用jQuery做一个模拟购物车的示例 用到的设计模式 工厂模式 单例模式装饰器模式 观察者模式状态模式 模板方法模式 代理模式 UML类图...

大数据Flink(一百):SQL自定义函数(UDF)和标量函数(Scalar Function)

文章目录 SQL自定义函数(UDF)和标量函数(Scalar Function)...

14、Set 和 Map 数据结构

文章目录 14、Set 和 Map 数据结构1. Set1.1 基本用法☆☆☆ 值唯一&#xff0c;没有重复的值☆☆☆ 接受数组、具有 iterable 接口的数据结构☆☆☆ 数组去重1&#xff1a;[...new Set(array)]☆☆☆ 字符串去重&#xff1a;[...new Set(ababbc)].join()☆ 两个对象总是不相等…...

数据结构与算法设计分析——动态规划

目录 一、动态规划的定义二、动态规划的基本要素和主要步骤&#xff08;一&#xff09;最优子结构&#xff08;二&#xff09;重叠子问题 三、贪心法、分治法和动态规划的对比&#xff08;一&#xff09;贪心法&#xff08;二&#xff09;分治法&#xff08;三&#xff09;动态…...

PHPExcel 字母列不够用,针对 AA、AB、AC ... ZZ 这样的列

在PHPExcel 导出功能中&#xff0c;如果字段超过26个字母时&#xff0c;会出现字母不够用A~Z后 AA~AZ来添加后续字段 php中&#xff0c;chr() 函数从指定 ASCII 值返回字符&#xff0c;可以自定义一个方法来返回对应的字母 // $num 列数 1,2,3,4,5,6,7...... function getCol…...

fastdds源码编译安装

如何根据源码编译 fastdds 如何根据源码编译 fastdds 这里是为了根据源码编译一个 fastdds 。 fastdds 依赖 fastcdr Asio TinyXMl2 下载 fastdds 源码 git clone gitgithub.com:eProsima/Fast-DDS.git 进入 下载好的 fastdds 中执行 git submodule update --init --recurs…...

第二证券:风电概念强势拉升,威力传动“20cm”涨停,双一科技等大涨

风电概念20日盘中强势拉升&#xff0c;到发稿&#xff0c;威力传动“20cm”涨停&#xff0c;双一科技涨超17%&#xff0c;顺发恒业亦涨停&#xff0c;金雷股份、大金重工涨约7%&#xff0c;新强联、海力风电涨超5%。 音讯面上&#xff0c;9月以来江苏、广东海风项目加快推动&a…...

DataFrame窗口函数操作

文章最前&#xff1a; 我是Octopus&#xff0c;这个名字来源于我的中文名--章鱼&#xff1b;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github &#xff1b;这博客是记录我学习的点点滴滴&#xff0c;如果您对 Python、Java、AI、算法有兴趣&#xff0c;可以关注我的…...

【德哥说库系列】-RHEL8环境源码编译安装MySQL8.0

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…...

Sandboxie+Buster Sandbox Analyzer打造个人沙箱

一、运行环境和需要安装的软件 实验环境&#xff1a;win7_x32或win7_x64 用到的软件&#xff1a;WinPcap_4_1_3.exe、Sandboxie-3-70.exe、Buster Sandbox Analyzer 重点是Sandboxie必须是3.70版本。下载地址&#xff1a;https://github.com/sandboxie-plus/sandboxie-old/blo…...

源码解析flink的GenericWriteAheadSink为什么做不到精确一次输出

背景 GenericWriteAheadSink是可以用于几乎是精准一次输出的场景&#xff0c;为什么说是几乎精准一次呢&#xff1f;我们从源码的角度分析一下 GenericWriteAheadSink做不到精准一次输出的原因 首先我们看一下flink检查点完成后通知GenericWriteAheadSink开始进行分段的记录…...

C#经典十大排序算法(完结)

C#冒泡排序算法 简介 冒泡排序算法是一种基础的排序算法&#xff0c;它的实现原理比较简单。核心思想是通过相邻元素的比较和交换来将最大&#xff08;或最小&#xff09;的元素逐步"冒泡"到数列的末尾。 详细文章描述 https://mp.weixin.qq.com/s/z_LPZ6QUFNJcw…...

C/C++文件操作(细节满满,part2)

该文章上一篇&#xff1a;C/C文件操作&#xff08;细节满满&#xff0c;part1&#xff09;_仍有未知等待探索的博客-CSDN博客 个人主页&#xff1a;仍有未知等待探索_C语言疑难,数据结构,小项目-CSDN博客 专题分栏&#xff1a;C语言疑难_仍有未知等待探索的博客-CSDN博客 目录 …...

web前端面试-- 手写原生Javascript方法(new、Object.create)

web面试题 本人是一个web前端开发工程师&#xff0c;主要是vue框架&#xff0c;整理了一些面试题&#xff0c;今后也会一直更新&#xff0c;有好题目的同学欢迎评论区分享 ;-&#xff09; web面试题专栏&#xff1a;点击此处 手动实现Object.create 通过Object.create&#…...

C++前缀和算法的应用:得到连续 K 个 1 的最少相邻交换次数 原理源码测试用例

本文涉及的基础知识点 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 滑动窗口 题目 给你一个整数数组 nums 和一个整数 k 。 nums 仅包含 0 和 1 。每一次移动&#xff0c;你可以选择 相邻 两个数字并将它们交换。 请你返回使 nums 中包…...

目标检测YOLO实战应用案例100讲-基于YOLOv5的航拍图像旋转目标检测

目录 前言 国内外研究历史与现状 目标检测技术的研究历史与现状...

H5前端开发——BOM

H5前端开发——BOM BOM&#xff08;Browser Object Model&#xff09;是指浏览器对象模型&#xff0c;它提供了一组对象和方法&#xff0c;用于与浏览器窗口进行交互。 通过 BOM 对象&#xff0c;开发人员可以操作浏览器窗口的行为和状态&#xff0c;实现与用户的交互和数据传…...

stable diffusion如何解决gradio外链无法开启的问题

问题确认 为了确认gradio开启不了是gradio库的问题还是stable diffusion的问题&#xff0c;可以先执行这样一段demo代码 import gradio as grdef greet(name):return "Hello " name "!"demo gr.Interface(fngreet, inputs"text", outputs&q…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

从实验室到产业:IndexTTS 在六大核心场景的落地实践

一、内容创作&#xff1a;重构数字内容生产范式 在短视频创作领域&#xff0c;IndexTTS 的语音克隆技术彻底改变了配音流程。B 站 UP 主通过 5 秒参考音频即可克隆出郭老师音色&#xff0c;生成的 “各位吴彦祖们大家好” 语音相似度达 97%&#xff0c;单条视频播放量突破百万…...

用鸿蒙HarmonyOS5实现国际象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的国际象棋小游戏的完整实现代码&#xff0c;使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├── …...