基于水基湍流优化的BP神经网络(分类应用) - 附代码
基于水基湍流优化的BP神经网络(分类应用) - 附代码
文章目录
- 基于水基湍流优化的BP神经网络(分类应用) - 附代码
- 1.鸢尾花iris数据介绍
- 2.数据集整理
- 3.水基湍流优化BP神经网络
- 3.1 BP神经网络参数设置
- 3.2 水基湍流算法应用
- 4.测试结果:
- 5.Matlab代码
摘要:本文主要介绍如何用水基湍流算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。
1.鸢尾花iris数据介绍
本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:
| 特征1 | 特征2 | 特征3 | 类别 | |
|---|---|---|---|---|
| 单组iris数据 | 5.3 | 2.1 | 1.2 | 1 |
3种类别用1,2,3表示。
2.数据集整理
iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:
| 训练集(组) | 测试集(组) | 总数据(组) |
|---|---|---|
| 105 | 45 | 150 |
类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。
当进行数据训练对所有输入特征数据均进行归一化处理。
3.水基湍流优化BP神经网络
3.1 BP神经网络参数设置
通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络参数如下:
%创建神经网络
inputnum = 4; %inputnum 输入层节点数 4维特征
hiddennum = 10; %hiddennum 隐含层节点数
outputnum = 3; %outputnum 隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;
3.2 水基湍流算法应用
水基湍流算法原理请参考:https://blog.csdn.net/u011835903/article/details/121785889
水基湍流算法的参数设置为:
popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
% inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
% hiddennum + outputnum 为权值的个数
dim = inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;% inputnum * hiddennum + hiddennum*outputnum维度
这里需要注意的是,神经网络的阈值数量计算方式如下:
本网络有2层:
第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;
第一层的权值数量为:10;即hiddennum;
第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;
第二层权值数量为:3;即outputnum;
于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;
适应度函数值设定:
本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。
4.测试结果:
从水基湍流算法的收敛曲线可以看到,整体误差是不断下降的,说明水基湍流算法起到了优化的作用:


5.Matlab代码
相关文章:
基于水基湍流优化的BP神经网络(分类应用) - 附代码
基于水基湍流优化的BP神经网络(分类应用) - 附代码 文章目录 基于水基湍流优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.水基湍流优化BP神经网络3.1 BP神经网络参数设置3.2 水基湍流算法应用 4.测试结果…...
0010【Edabit ★☆☆☆☆☆】Maximum Edge of a Triangle
【Edabit 算法 ★☆☆☆☆☆】Maximum Edge of a Triangle algorithms math numbers Instructions Create a function that finds the maximum range of a triangle’s third edge, where the side lengths are all integers. Examples nextEdge(8, 10) // 17 nextEdge(5, 7…...
Godot 官方2D C#重构(3):TileMap使用
文章目录 前言Godot Tilemap使用Tilemap使用TileSet和TilemapTilemap 图片资源添加TileSet,开始切图导入图片切图 简单添加TileMap如何使用 Auto Tilemap使用Auto Tilemap 前言 Godot 官方 教程 Godot 2d 官方案例C#重构 专栏 Godot 2d 重构 github地址 Godot Tilem…...
6.DApp-用Web3实现前端与智能合约的交互
题记 用Web3实现前端与智能合约的交互,以下是操作流程和代码。 准备ganache环境 文章地址:4.DApp-MetaMask怎么连接本地Ganache-CSDN博客 准备智能合约 文章地址: 2.DApp-编写和运行solidity智能合约-CSDN博客 编写index.html文件 <!…...
数据异常值检测
数据异常值检测 参考: 数据异常值的检测方法-基于Python 独家 | 每个数据科学家应该知道的五种检测异常值的方法(附Python代码) 异常检测主要方法总结 14种数据异常值检验的方法! 14种数据异常值检验的方法 浅谈数据挖掘中的…...
监听redis键失效事件实现延迟功能
用Redis实现延迟队列,我研究了两种方案,发现并不简单 SpringBoot实现Redis失效监听事件—KeyExpirationEventMessageListener Redis 监听过期的key(KeyExpirationEventMessageListener) 项目背景 需求上说,需要延迟…...
使用UniApp实现视频数组自动下载与播放功能:一步步指导
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
C语言笔试面试必刷题
🎊【面经】专题正在持续更新中,内含C语言,数据结构,Linux,网络编程等✨,欢迎大家前往订阅本专题,获取更多详细信息哦🎏🎏🎏 🪔本系列专栏 - …...
window11安装Python环境
python环境安装 访问Python官网:https://www.python.org/ 点击downloads按钮,在下拉框中选择系统类型(windows/Mac OS/Linux等) 选择下载最新版本的Python cmd命令如果出现版本号以及>>>则表示安装成功 如果出现命令行中输入python出现如下错误 可能…...
SpringBoot中的日志使用
SpringBoot的默认使用 观察SpringBoot的Maven依赖图 可以看出来,SpringBoot默认使用的日志系统是使用Slf4j作为门户,logback作为日志实现 编写一个测试代码看是否是这样 SpringBootTest class SpringbootLogDemoApplicationTests {//使用Slf4j来创建LOG…...
微信小程序中监听横屏竖屏
直接上代码 第一步:在你想要监听页面的json文件中添加此节点 "pageOrientation": "auto" 第二步:wx.onWindowResize() page({ onLoad() {this.kstd()},kstd(){ // 监听屏幕旋转事件 wx.onWindowResize((res)>{// …...
云原生概述
1. 何谓云原生 云原生是一种构建和运行应用程序的方法,是一套技术体系和方法论。云原生(CloudNative)是一个组合词,CloudNative。Cloud表示应用程序位于云中,而不是传统的数据中心;Native表示应用程序从设…...
消失的它:网络层分片包中的第一个分片包去哪了?
在网络层IP包分片的过程中,遇到了大麻烦! 主机A: IP地址:192.168.0.10/24 MAC地址:02:00:00:00:00:10 主机B: IP地址:192.168.0.20/24 MAC地址:02:00:00:00:00:20 MTU:1…...
LeetCode刷题---有效的括号
这里用到了栈的思想 栈(stack)是限定仅在表尾进行插入或者删除的线性表。对于栈来说,表尾端称为栈顶(top),表头端称为栈低(bottom)。不含元素的空表称为空栈。因为栈限定在表尾进行插入或者删除,…...
QT学习笔记-QT访问各种关系数据库笔记汇总
QT学习笔记-QT访问各种关系数据库笔记汇总 1、QT访问Oracle数据库2、QT访问SQLServer数据库3、QT访问MySQL数据库4、QT访问PostgreSQL数据库5、QT访问Access数据库6、QT多线程中访问数据库的要点 在使用QT进行应用开发过程中,不可避免的会涉及到访问关系数据库&…...
Shell脚本-常用命令
Shell 脚本 Shell 脚本(shell script),是一种为 shell 编写的脚本程序。 业界所说的 shell 通常都是指 shell 脚本,但读者朋友要知道,shell 和 shell script 是两个不同的概念。 由于习惯的原因,简洁起见&a…...
Flink之输出算子Redis Sink
Redis Sink Redis Sinkjedis实现添加依赖自定义Redis Sink使用Sink验证 开源 Redis Connector添加依赖自定义Redis SinkRedisCommandString数据类型示例Hash数据类型示例 使用SinkRedisStringSinkRedisHashSink 验证 Redis Sink 在新版Flink的文档中,并没有发现Redi…...
【数据结构】顺序表实现通讯录
前言 在上一节中我们实现了顺序表,现在我们将使用顺序表完成通讯录的实现。(注:本人水平有限,“小屎山”有些许bug,代码冗余且语无伦次,望谅解!😅) 文章目录 一、数据结构…...
JMeter 随机数生成器简介:使用 Random 和 UUID 算法
在压力测试中,经常需要生成随机值来模拟用户行为。JMeter 提供了多种方式来生成随机值,本文来具体介绍一下。 随机数函数 JMeter 提供了多个用于生成随机数的函数,其中最常用的是 __Random 函数。该函数可以生成一个指定范围内的随机整数或…...
vue3 更换 elemnt-ui / element-plus 版本npm命令
1. 安装 / 更换 element-ui 版本 [ 在 后面指定想要安装的版本 ] //卸载当前版本 npm uninstall element-ui //安装指定版本 npm i element-ui2.4.8 -S --legacy-peer-deps 2. 安装 / 更换 element-plus 版本 [ 在 后面指定想要安装的版本 ] npm install element-plus2.3…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
